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ABSTRACT

Simple point-optimal sign-based tests are developed ference on linear and nonlinear regres-
sion models with non-Gaussian heteroskedastic errorsieBig are exact, distribution-free, robust
to heteroskedasticity of unknown form, and may be invertediild confidence regions for the
parameters of the regression function. Since point-optsiga tests depend on the alternative hy-
pothesis considered, an adaptive approach based on aapiitle technique is proposed in order
to choose an alternative that brings power close to the pewezlope. The performance of the
proposedjuasi-point-optimakign tests with respect to size and power is assessed in &Namko
study. The power of quasi-point-optimal sign tests is tghycclose to the power envelope, when
approximately10% of the sample is used to estimate the alternative and theimgrgasample to
compute the test statistic. Further, the proposed proesdperform much better than common
least-squares-based tests which are supposed to be rghusitdneteroskedasticity.

Keywords: sign test; point-optimal test; nonlinear model; heteeagsticity; exact inference;
distribution-free; power envelope; split-sample; adaptnethod; projection.
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1. Introduction

Regression errors in economic data frequently exhibitmmmal distributions and heteroskedastic-
ity. In the presence of several types of heteroskedasticiyal “robust” tests — such as tests based
on White (1980)-type variance corrections - remain plagmegoor size control and/or low power.
This is the case, in particular, when there is a break in thidiance variance or with a GARCH
structure with one or several outliers. Further, the alabglaxact parametrigests typically assume
Gaussian disturbances. The latter assumption is ofteralistie and, in the presence of heavy tails
and asymmetric distributions, the associated tests maly eas perform well in terms of size con-
trol or power. Furthermore, statistical procedures foeiahce on parameters wénlinear models
are typically based on asymptotic approximations, whicly eesily not be reliable in finite samples
[see Dufour (2003)].

The present paper proposes simple point-optimal signebtests in linear and nonlinear re-
gression models, which are valid under non-normality artérbekedascticity of unknown form,
provided the errors have median zero conditional on theaggbbry variables. The proposed tests
are exact, distribution-free, robust against heterositezity of unknown form, and may be inverted
to build confidence regions for the vector of unknown paramsetThe setup and the type of proce-
dures we consider are motivated in at least two ways.

First, it is well known that hypotheses on means (or moments) aregestable in nonparametric
setups even under the apparently restrictive assumptairotiservation are independent and iden-
tically distributed (.i.d.): if a test has levety for testing the null hypothesis that the mean.ofl.
observations has a given value, then its power cannot |érgarthe levet under any alternative of
the mean; see Bahadur and Savage (1956). Similar resultédn@oefficients of regression models;
see Dufour, Jouneau and Torrés (2008). In other words, misnaee not empirically meaningful
in many common nonparametric models. This provides a streagon for focusing on quantile
parameters (such as medians) in nonparametric modelseathsf moments — because quantiles
are not affected by such problems of nontestability.

Secondin the presence of general heteroskedasticity, LehmadiStain (1949) and Pratt and
Gibbons (1981) show that sign methods are the only possialeaiproducing valid inference in
finite samples; see also Dufour and Hallin (1991) and Duf2008). If a test has level for testing
the null hypothesis that observations are independentweticla distribution symmetric about zero,
then its level must be equal t® conditional on the absolute values of the observations:thero
words, it must be aign test For a more detailed discussion of statistical inferengeossibilities
in nonparametric models, see Dufour (2003) and Dufour €2a08).

A number of sign-based test procedures have been develogkd literature. In the presence
of only one explanatory variable, Campbell and Dufour (19905, 1997) propose nonparametric
analogues of thetest based on sign and signed rank statistics, which are apf#ieghen regres-
sors involve feedback of the type considered by Mankiw arep#b (1986). These tests are exact
even when the disturbances are asymmetric, non-normalhetedoskedastic. Boldin, Simonova
and Tyurin (1997) propose locally optimal sign-based wmifee and estimation for linear models.
Coudin and Dufour (2008) extend the work by Boldin et al. (1@ account for serial dependence
and discrete distributions. Wright (2000) proposes vagaratio tests based on the signs and ranks



to test the null hypothesis that the series of interest is dimgale difference sequence. For other
sign-based test procedures, the reader can consult Capames and Randles (2006) and Gerard
and Schucany (2007) among others.

The present paper focuses on the optimality of sign testslarekes point-optimal tests based on
sign statistics. Point-optimal tests are useful in a nunoberays and they are particularly attractive
when testing an economic theory against another one. Anriaiofeature of these tests comes
from the fact that they trace out tpewer envelopd.e. the maximum achievable power for a given
testing problem. The power envelope provides an obviousteark against which test procedures
can be evaluated. An early review and discussion of poititeg tests is available in King (1987-
88). More recently, this technique has been exploited iersd\papers in order to improve power.
Dufour and King (1991) use point-optimal tests to do infeeenn the autocorrelation coefficient of
a linear regression model with first-order autoregressasenal disturbances. Elliott, Rothenberg
and Stock (1996) derive the asymptotic power envelope fortymptimal tests of a unit root in the
autoregressive representation of a Gaussian time seriles uarious trend specifications. Jansson
(2005) derives an asymptotic Gaussian power envelope $tg td cointegration and proposes a
feasible point-optimal cointegration test whose locahagtptic power function is found to be close
to the asymptotic Gaussian power envelope. Begum and Ki@@5(2propose a new approach
for testing a composite null against a composite alteraatiypothesis based on the generalized
Neyman-Pearson lemma and maximizes average power subjecintrolling average size over
different subsets of the null hypothesis parameter spa@gl. Huang and Yang (2008) suggests
locally optimal tests for exponential distributions wittpe-I censoring.

Since point-optimal sign (hereafter POS) tests dependealtbrnative hypothesis, we propose
an adaptive approach based on a split-sample technique{ibahd Torrés (1998), Dufour and
Jasiak (2001)] to choose an alternative that makes the powege of the POS test close to the
power envelope. The idea consists in dividing the sample tiwb independent parts and use the
first one to estimate the value of the alternative hypothasis the second to compute the POS
test statistic [Dufour and Taamouti (2003), Dufour and $gie (2008)]. The simulation results
show that using approximately0% of sample to estimate the alternative yields a power functio
which is typically very close to the power envelope. We pneseMonte Carlo study assessing the
performance of the proposed “quasi-POS” test by compahiaq size and power to those of some
common tests which are supposed to be robust against Hetdesdicity. The results show that our
procedures work quite well.

The plan of the paper is as follows. In Section 2, we presemn&i@l framework for deriving
POS tests. In Section 3, we propose POS tests in the contdixieaf and nonlinear regression
models. In Section 4, we study the power properties of the RS and propose an adaptive
approach to choose an optimal alternative. In Section 5, iseuds the construction of the POS
confidence regions using projection techniques. In Sediowe present a Monte Carlo study
assessing the performance of POS tests by comparing theiaisd power to those of some popular
tests. We conclude in Section 7. Proofs are presented inlppé.



2. General framework

In this section, we describe a framework for deriving PO&tasthe context of general hypothesis
testing problem. The point-optimal tests are useful in almemof ways and they are most attractive
for problems in which the parameter space can be restrigtatidoretical considerations. They
would ensure optimal power at given point and, dependindherstructure of the problem, they can
have power over the entire parameter space.

We consider here a random samplg};’ , such that

Y1, --- , Yn are independent with
P[ytzo]:ptut:17°”7n' (21)

We define the following vector of signs

/

U(n) = (s(y1), - » s(yn))
where
s(yt):{ é:zﬁzzzg ,t=1,...,n.
We assume also that thg have no mass at zerie.
Plyy =0 =0, t=1,...,n, (2.2)

which holds automatically when eaghhas a continuous distribution.
We wish to test the null hypothesis

Hy:Pls(y) =1 =pw, t=1,...,n, (2.3)
where0 < pyo < 1,t =1, ..., n, against the alternative hypothesis

Hy:Pls(y) =1 =pn, t=1,...,n, (2.4)
where0 < py < 1,t=1, ..., n. We consider optimal tests (in the Neyman-Pearson sensehwhi

maximize the power function under the constratitejectH, | Hy] < «; see Lehmann (1959,
page 65). The latter allows one to work with the log-likelkddfunction and simplify the expression
of POS test statistics. The following theorem gives a POSddsst the null hypothesig against
the alternative hypothesid;.

Theorem 2.1 Under the assumption®.1)-(2.2), let Hy and H; be defined by2.3) - (2.4),

bt )}
Sh, In s 2.5
[po(n ; 1 [pto =) (yt) (2.5)
wherepy(n) = (pio, - - - ,pno)/ andpi(n) = (p11, .. ,pm)’, and suppose the constant satis-



fiesP [Sy[po(n), p(n)] > c1] = aunder Hy, with 0 < o < 1. Then the test with critical region

Snlpo(n), p1(n)] > e (2.6)

is most powerful for testingH, against H; among levelr tests based on the signs

(5(W1)s -, 5(yn) -

PrRoOOF. The likelihood function of the random samgdlg; };-, is

LU, p(m)) =[] {Plor = 09991 - Py > 0]y} 27)
t=1
wherep(n) = (p1, ... , pn)/. UnderHy, L(U(n), p(n)) takes the form
L(U( Hps(yt 1 — po) '3, (2.8)
while underH1,
L(U( Hps(yt 1—pp )t (2.9)

The log-likelihood ratio is then

ln{L(U(n), pi(n)) } _ iatmo)s(%) + b(n) (2.10)

t=1

where
P11 1- ptl) < ptl)
a;(10)=In|— | —-In| ——— | , In 2.11
(110) <pt0> <1—pt0 Z 1 —piwo (1D
Using the Neyman-Pearson lemma [see Lehmann (1959, pa};efﬁSDnost powerful level test
of Hy againstH; rejectsH, when

Zl [pﬂl_pm)} s(yt) >c1=c—b(n).

—~ |pw(l —pa)

In the case wherg,; = p1, pro = po, for all ¢, with p; > pg > 0, the critical region in (2.6) can
be written as

n

Z s(ye) > c1.

t=1



Similarly, for p;1 = p1, pro = po and0 < p1 < pg, the critical region (2.6) takes the form

n

Z s(y) <

t=1

for some appropriate constaft. In both casesi.e. for p; > py > 0 and0 < p; < py, the test
statistic is

Sn=_s(w). (2.12)
t=1
UnderHy, S,, follows a binomial distributionBi(n, po), i.e. P(S,, = k) = C¥pk(1—po)"~*, where
Ck = n!/[k!(n — k)!] . Since the test statistic (2.12) does not depend on the atteerhypothesis
p1, the above test corresponds tar@formly most powerfutlest.

Example 2.1 BACKTESTING VALUE-AT-RISK  Consider daily ex post portfolio returns, say,
and daily ex ante Value-at-Risk forecasts, $&yR;(p), with promised coverage raje such that
P.—1[R: < VaR(p)] = p. Define the hit sequence dfa R, (p) violations as

| Lif Ry <VaR(p)
=\ o0, otherwise.

Backtesting Value-at-Risk consists in testing whetherdinerage rate of Value-at-Risk (VaR) is
correct [see Christoffersen (1998)]. It is a key part of theiinal model's approach to market
risk management as laid out by the Basel Committee on Bartkupgervision (1996). Testing the
unconditional coverage of VaR is equivalent to testing thimypothesis

Ho: L % B(p) (2.13)

against the alternative hypothesis
o : I, % B(p) (2.14)

whereB(p) represents a Bernoulli random variable such Bj&t(p) = 1] = 1—-P[B(p) = 0] = p.
Under Hy, the likelihood function of the random sequen{:ét}"f:1 is given by

T

Lo(I1, ..., Ir,p) = [ [p"t (1 = p)' ="t = p™r (1 = p)" 57
t=1

whereSr = S° | I;. Under the alternative, the likelihood function is
Ll(-[h ey IT?ﬁ) = ﬁST(l _p)n_ST'

Using the Neyman-Pearson lemma and the previous resuktst atatistic for the null hypothesis
(2.13) against the alternative hypothesis (2.14) is giverbp = Zthl I;, where undetH, St
follows a binomial distributionBi(T', p).



3. POS tests in linear and nonlinear regression models

This section proposes exact POS-based tests in the cohtiexdar and nonlinear regression models
where regressors can be taken as fixed. We consider in turprodiadems. The first one consists in
testing whether the conditional median of a vector of oletmm is zero against a linear regression
alternative. The second one tests whether the coeffici€atpassibly nonlinear median regression
function have a given value against another nonlinear megigression. The first problem is a
special case of the second one, but it will be useful from grogitional viewpoint to study the
simpler problem first. Both problems can be viewed as speaws#s of the general setup in Section
2.

3.1. Testing the zero coefficient hypothesis in linear regssions

Suppose the variablg can be explained by a linear function of the vecter

yt:x;ﬁ—i—gt,t:l,...,n, (3.2)
wherez; is ak x 1 vector of explanatory variableg, € R” is an unknown parameter vector, and
the errors:q, ... , g, are independent conditional ¢f with

1
P[€t>0|X]:P[€t<0|X]:§,tzl,...,n, (3.2)
whereX = [zq, ..., xn]' is ann x k matrix. Note (3.2) entails that; has no mass at zerbe.
Ple, = 0] X] = 0 for all ¢.
We wish to test the null hypothesis
Hy:8=0 (3.3)
against the alternative hypothesis
Hy: B =p. (3.4)

Under (3.1), the hypothesis testing problem given by (83)) is a special case of the one defined
by (2.3)-(2.4) where
pe=Ply>0|X]=1-Plg;, < —FB x| X]
UnderH,,
1

ptozl—P[Et<O|X]:§ (3.5)
while, underH;,

pu =1—Pley < =012 | X]. (3.6)

Thus, a POS test for the null hypothesis (3.3) against teergtive hypothesis (3.4) can be deduced
from Theoren®.1using the equations (3.5)-(3.6). We then have the followesylt.



Proposition 3.1 Under the assumptions.1) and(3.2), let Hy and H; be defined by3.3) - (3.4),

1) = Z ar(B1) s(yt)
t=1

where

[1 — Pler <~y | X]} ’ (3.7)

at(By) = Pler < —zi6, | X]

and suppose the constant(3,) satisfiesP [> ;" | a:(8;)s(y:) > c1(81)] = « under Hy, with
0 < a < 1. Then the test that rejectd, when

SLn(B1) > c1(B4) (3.8)

is most powerful conditional onX) for testing H, against H; among levek tests based on the
signs(s(y1), ..., s(yn)) -

Under the null hypothesis, the signs$y,), ..., s(y,) are i.i.d. according to a Bernoulli
Bi(1,0.5). So the distribution of the test statistic only depends onvilke&ghtsa.(5,) and thus
does not involve any nuisance parameter under the null hgg@®. In view of the nonparametric
nature of assumption (3.2), this means that tests baséd.qf3, ), such as the test given by (3.8),
are distribution-free and robust against heteroskedigsti€ unknown form. It is a nonparametric
pivotal function Under the alternative hypothesis, however, the powertiomof the test depends
on the form of the distribution function af.

An interesting special case is the one where. .. , ¢, are i.i.d. according to &/ (0, 1) distri-
bution. Then the optimal test statistid.,,(3; ) takes the form:

SL;(6) Zl[ 2] st 39)

whered(-) is the standard normal distribution function.

In view of the above characterization of the distributionSaf,, (3, ), its distribution can be
simulated under the null hypothesis and the relevant afitialues can be evaluated to any degree
of precision with a sufficient number of replications. It Is@possible to run exact Monte Carlo
tests (corrected for the discrete nature of the test stitest described in Dufour (2006).

3.2. Testing general full coefficient hypotheses in nonlirae regressions

We consider now a nonlinear regression model:

yr = f(xe, B) e, t=1,...,n, (3.10)

wherex; is an observablé x 1 vector of fixed explanatory variableg{ - ) is a scalar function,
B € R* is an unknown vector of parameters, and the emrgrs. . , ¢, are independent conditional



on X with a distribution that satisfies (3.2). We do not requirattthe parameter vectgt be
identified.
We consider the problem of testing the null hypothesis

H(B,) : B =By (3.11)

against the alternative hypothesis
H(By): B =P (3.12)

A test for H(f3,) againstH (3;) can be constructed as in Section 3.1. First, we note that Imode
(3.10) is equivalent to the transformed model

Ut = gz, B, Bo) + €,

Where:’-jt =Yt — f(xtvﬁO) andg(£t>ﬁ7/80) = f(xbﬁ) - f(xbﬁO)' Under assumption (21) and

conditional onX, 7, ... , ¥, are independent. Second, testiigs3,) againstH (3, ) is equivalent
to testing )

Ho:g(xe, 8,89) =0,t=1, ..., n,
against

Hl : g(xtvﬂaﬁo) = f(xbﬁl) - f(xt760)7 t= 17 cee sy N
Finally, the likelihood function of new random samglg };._, is given by

n

L), 5. X) =] {P[ﬂt >0 X*U)(1-Plg >0| X])lfs(@t)}

t=1
where the elements of the sign vectofn) = (s(1), - .. , s(jn)) are
) 1,if §, > 0
s(yt)z{ 0 ifgizo Jfort=1,...,n.

Thus, we can use the result of Propositi®d to derive a sign-based test for the null hypothesis
H(B,) againstH (3,). This yields the following result.

Proposition 3.2 Under the assumptiong3.10) and (3.2), let H(5,) and H(/3;) be defined by
(3.11) - (3.12),

n

SNu(BolB1) =D ar(BolB1) s (v — f(xe, By)) (3.13)

t=1

where
1 —p(x, By, By | X)

p(xe, B, Br | X) |7
and suppose the constant(8,, §;) satisfiesP [> ;" ; a:(31)s(y:) > c1(By, B1)] = « under

at(BolB1) = In [



H(By), with0 < o < 1. Then the test that rejecd (5,) when

SNn(BolB1) > c1(By, B1)

is most powerfulconditional onX) for testingH (3,) againstH (3,) among levelx tests based
on the signgs(71), - .., (7)) -

If we consider a linear functiorf(z;, 3) = x;ﬁ and assume that under the alternative hypoth-
esise; follows N(0, 1), then the test statistic for the null hypothegi§3,) against the alternative
hypothesisH (3,) is given by:

@(372(51 - ﬁo))
- 45(1’2(51 - 50))

whered(.) is the standard normal distribution function. The testistiatS N, (5,|3,) depends on a
particular alternative hypothesis . In practice, the latter is supposed to be unknown which ake
the proposed POS test unfeasible. However, in the nexbsest propose a new approach which
can be use to choose an optimal alternatiyeat which the power of the test is maximized.

SN, (BolB1) = Zln
t=1

] s(ye — 2, (3.14)

4. Choice of the optimal alternative hypothesis

In this section, we study the power properties of the propd¥®S test. We derive its power en-
velope and analyze the impact of the alternative hypoth@gisn its power function. Since the
latter depends on the alternative hypothesis, we propos@@mach (hereafter adaptive approach)
to choose the alternative, at which the power of POS test is close to the power envelope.

4.1. Power envelope of POS tests

We derive an upper bound (hereafter power envelope) of thepfunction of POS test. It is
well known, see for example King (1987-88), that point-njal tests can be used to trace out the
maximum attainable power envelope for a given testing @bl This power envelope provides a
natural benchmark against which test procedures can beareohp

We know from Section 3 that the POS test statistic is a funatio,

:Et)ﬂO? 51 ‘ X)
xhﬂO? 51 | X)

SN*(B,]81) Zl[ s(ye — f (21, 89))-

Its power function, sayi (53, (3;), is also a function of3, :

(B, B1) = P[SN,(BolB1) > c1(Bo, B1)]

wherec; (8, ;) satisfiesP[SN; (8y]51) > c1(By, 81) | Ho] < «. The following theorem pro-
vides a theoretical formula for power function of POS test.



Theorem 4.1 Under assumption§2.1), (3.2) and (3.10), the power function of POS test &t is
given by

U

oo Im § exp (—iuci (By, B1)) dgn=(w)
ne.6) =5+ [ {esp (ur( £ s 0}

where, foru € R,

u

n

g =L [+ (o0 (| S5 0] ) 1) 0ot 10

p(ze, By, B1 | X) = Pler < f(@, By) — f(a1, 81) | X], i = v/—1, andIm{z} denotes the imagi-
nary part of a complex number. The critical valuec; (3, 3,) is chosen so theR[SN;:(5,|5,) >
c1(Bo, B1) | Ho] < o, wherea is an arbitrary significance level.

The proof of this theorem is given in Appendix A. Since the statisticS N, (5,|3, ) is optimal
against the alternativg,, the envelope power function, sdy(;3), is a function which associates
the valuelI (3, 3;) to each element ¢ R*:

I(B) = (B, B) = PISN;(8) > c1(Bo, B1)]- (4.1)

The objective now is to find a value of, at which the power curve of POS test remains close to
the relevant power envelope. For a given valiieof power function and levek of POS test, an
alternative, say3, (II, ), can be determined by inverting the power envelope funckigy). For
any valuell € («, 1), the family of POS test statistics can be written as follows:

* p(@t, By, B1(IL, ) | X) ot i
{SN Zl[ p(zt, By, B1 (T, ) | X) s (ye — f( taﬂo)),forﬂe(,l)}.

Although every member of this family is admissible, it is pibde that some values éf may yield
tests whose power functions lie close to the power envelgpeaconsiderable range. Past research
suggests that values éf near one-half often have this property, see for example Ki8§7-88),
Dufour and King (1991) and Elliott et al. (1996). Conseqligenine can choose as an optimal
alternative the one which correspond<dio= 0.5. From Theoremt.1and equation (4.1), the value
of 3, which corresponds td/ = 0.5 is the solution of the following equation

/oo Im {eXp (—tuci(Bo, B1)) dsn: (U)}
0

u

du =0 (4.2)

wherec: (8, 31) andgg - (u) are defined in Theored. 1 Using the properties of the cumulative
density function (monotonically increasing, continuouim Pr(z < ¢) = 0 and 1ir+n Pz <
Cc——00 C— 100

¢) = 1) one can show that equation (4.2) has a unique solution. Hewew exact solution for
this equation is not feasible, since it is not easy to find goression folm{-} and the integral
f0°° Im{-}du is difficult to evaluate. The latter can be approximated gigiesults from Imhof

10



(1961), Davies (1973, 1980), among others, who propose aricah approximation for the dis-
tribution function using the

characteristic function. The proposed approximatioroitiices two types of errors: discretiza-
tion and truncation errors. Davies (1973), proposes aimit¢o control for discretization error, and
Davies (1980) proposes three different bounds to controlrémcation error. Another alternative
way to solve the power envelope function féy is to use simulations [see Elliott et al. (1996)]. We
can use simulations to approximate the power envelopeitmand calculate the optimal alterna-
tive which corresponds to the value &f(3,) near one-half.

Let us now examine the impact of the alternative hypoth8sien the power function. Using
simulations, we compare the power curves of POS test to tiempenvelope (PE) under different
alternatives and data generating processes (hereaftes)D®E consider a linear regression model
with one regressor and an error term which follows one of tiwing distributions (DGPSs):
normal distribution, Cauchy distribution, mixture of nahand Cauchy distributions, and nor-
mal distribution with a break in variance. We also considédeo DGPs [normal distribution with
GARCH(1, 1) plus jump variance and normal distribution with non staaignGARCH(1, 1) vari-
ance] which do not satisfy they key assumption (2.1) and dselts seem interesting. A more
detailed description of these DGPs is given in Section 6. Silmellations results [Figures 4.1-4.1]
show that the alternative hypothegis affects the power function. Particularly, whgnis far from
the null hypothesis, herg = 0, the power curve of POS test moves away from the power envelope
curve.

Since the previous approach to finding the optimal alteveas somewhat arbitrary, in the next
subsection we propose an adaptive approach based onasplilestechnique to estimate the optimal
alternative.

4.2. An adaptive approach to choose an optimal alternative

Existing adaptive statistical methods use the data to mé@terwhich statistical procedure is most
appropriate for a specific testing problem. These methaatsliysnvolve two steps. In the first step
a selection statistic is computed that estimates the sHape error distribution. In the second step
the selection statistic is used to determine an effectaistical procedure for the error distribution.
For more details about the adaptive statistical methoés;ghder can consult O’Gorman (2004).

The adaptive approach we consider here is an extension afdq@ive approach suggested in
Dufour and Taamouti (2003) and Dufour and Iglesias (200Bjdsts in parametric models involv-
ing nonstandard distributions. We propose a split-sangabriique [Dufour and Jasiak (2001)] to
chooses,; such that the power of POS test is close to the power enveldpe alternative hypoth-
esisf3, is unknown and a practical problem consists in finding itepehdent estimate. To make
size control easier, we estimate from a sample which is independent of the one used to compute
the POS test statistic. This can be easily done by splittiegsample. The idea is to divide the
sample into two independent parts and use the first one toastithe value of the alternative and
the second one to compute the POS test statistic.

Letn = ny+ng,y = (1'421)7 yEQ))/, X = (XE1)7XE2))/> ande = (s’(l), 522))’, where the matrices
Y)» X (i), ande ;) haven;, i = 1,2, rows. Whenf (z;, 3) is a linear function of (linear regression

11



Figure 1.Power comparisons: different alternatives
Normal and Cauchy error distributions

A. Normal distribution
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Note These figures compare the power of POS test under diffeliembatives. Panel A corre-
sponds to the case where the error tegrim the model (6.1) is homoskedastic and normally distrib-
uted. Panel B corresponds to the case wherg homoskedastic and follows a Cauchy distribution.
PE corresponds to the power envelop.

12



Power

Power

Note These figures compare the power of POS test under diffelienbatives. Panel A corre-
sponds to the case where the error ternin the model (6.1) follows a mixture of normal and
Cauchy distributions. Panel B corresponds to the case whdolows a normal distribution with

100

90

80

70

60

50

40

30

20

100

90

80

70

60

50

40

30

20

Figure 2.Power comparisons: different alternatives
Mixture and normal error distribution with break
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Figure 3.Power comparisons: different alternatives
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance
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Note These figures compare the power of POS test under diffelenbatives. Panel A corre-
sponds to the case where the error tesnin the model (6.1) follows a normal distribution with
GARCH(1, 1) plus jump variance and Panel B corresponds to the case whés#tows a normal
distribution with non stationary GARCH, 1) variance. PE corresponds to the power envelop.
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model), we can use the firs observationsy ;) and X(,), to estimate the alternative hypothesis
[, using OLS

. ’ G
By = Xy Xw) ™ Xayva)-

Because;@1 is independent of',), we can use the last, observationsy,) and X ), to calculate
the test statistic and get a valid POS test

Z In —pﬂ«"t’ﬂmﬁu |X)

s(ye — 7,0)
t=n1+1 (.Tt,ﬂo, | X)

SN;:(BolBy) =

wherep(zy, By, 8 | X) = Pley < :c;(ﬁo — 0B) | X]. However, the OLS estimator is known to
be very sensitive to outliers and non-normal errors, camsetly it is important to choose a more
appropriate method to estimatg. In the presence of outliers many estimators are proposed to
estimate the coefficients in regression model such thaets median of squares (LMS) estimator
[see Rousseeuw and Leroy (1987)], the S-estimators [sessBeuw and Yohai (1984)], and the
T-estimators [see Yohai and Zamar (1988)].

Now, whenf(z, 3) is a nonlinear function off (nonlinear regression model), the above OLS
method can not be used to estimate We will need to use for example nonlinear least squares
or maximum likelihood method to estimate the alternativediiiesis3;. This case will typically
require an iterative procedure for solution. As for lineagression model, we can use the fiist
observationsy ;) and X(;), to estimate the alternative hypothegisusing nonlinear least squares
method:

By =argminy [y — f (e, 51)]°
t=1

By

and the second last observationsy ;) and X ,), to calculate the test statistic:

S g [Lo o By 1)
t=ni1+1 (xbﬁO» (1) | X) | X]

wherep(x, By, 8 | X) = Pler < f(=, By) — f(xt, 5) | X]. Different choices fom; andn, are
clearly possible. Alternatively, we could select randortiig observations assigned to the vectors
Y1) andy o). As we will show latter the number of observations retairmdlie first and the second
subsamples have a direct impact on the power of the test. rticydar, it seems that we could
get more powerful test when we use a relatively small numbebeervations for computing the
alternative hypothesis and keep more observations fordlailation of test statistic. This point
is illustrated below in the context of a linear regressiondeio We use simulations to compare
the power curves of split-sample-based POS test (herea8ePOS test) to the power envelope
(hereafter PE) under different split-sample sizes andgudifferent DGPs [see Section 6]. The
results [Figures 4.2-4.2] show that using approximatély, of sample to estimate the alternative
yields a power which is typically very close to the power doge. This is true for all DGPs
considered in our simulation study.

SN (BolBy) = s (ye — f(z, Bo))
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Figure 4.Power comparisons: different sample splits
Normal and Cauchy error distributions

A. Normal distribution
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Note: These figures compare the power of POS test using diffeittsamples (SS-POS test);
4%, 10%, 20%, 40%, 60%, and80%. Panel A corresponds to the case where the error tgrim
the model (6.1) is homoskedastic and normally distributeahel B corresponds to the case where
e¢ IS homoskedastic and follows a Cauchy distribution. PEesponds to the power envelop.

16



Mixture and normal distribution with break

A. Mixture distribution

Figure 5.Power comparisons: different sample splits
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Note: These figures compare the power of POS test using diffe@ittsamples (SS-POS test);
4%, 10%, 20%, 40%, 60%, and80%. Panel A corresponds to the case where the error terim
the model (6.1) follows a mixture of normal and Cauchy disttions. Panel B corresponds to the
case where, follows a normal distribution with break in variance. PEresponds to the power

envelop.
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Figure 6.Power comparisons: different sample splits
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance
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corresponds to the case whegefollows a normal distribution with non stationary GARCH 1)

variance. PE corresponds to the power envelop.



5. POS confidence regions

In this section, we briefly describe how to build confidenagiales with known significance level
a, sayCg(a), for a vector of unknown parametegsusing the proposed POS tests. Consider the
regression model (3.10) and suppose we wish to test theypdthesis (3.11) against the alternative
hypothesis (3.12). The idea consists in finding all the \@bfgs, ¢ R* such that

g 1— X
SN0 = 3o {m [P0 s e | < a8 60

whereSN;(3,)() is the observed value 6fN;(3,|3,) and the critical value, (5,, 3,) is given
by the smallest constant (3,, 3;) such that

PISN,(BolB1) > c1(Bo, B1) | B = Bo) < cv.

The confidence regio@'s(«) of the vector of parameterscan be defined as follows:

Cole) = {8y SN;(B) < c1(By, 51) | PISNG(Bol81) > 1(Bos B1) | 8= Byl <}

Further, given the confidence regi6fy(«), we can also derive confidence intervals for the compo-
nents of vectop using the projection techniques. The latter can be useddatinfidence sets, say
9(Cs(a)), for general transformationgof 3 in R™. Since, for any set’s(«),

B e Cgla) = g(B) € g(Cp(a)) (5.1)

we have
P8 € Cs(a)] =1 —a=Plg(B) € g(Cs(e))] =21 - a, (5.2)

where
9(Cp(a)) ={6 eR™: 3B € Cg(a), g(B) =6}

From (5.1) and (5.2), the sg{C;s(«)) is a conservative confidence set §g13) with level1 — «. If
g(p) is a scalar, then we have:

P [inf {g(8),for By € Ca(a)} < g(B) < sup{g(Bo), for Gy € Cp(a)}] > 1 —a.

More details about the projection technique can be find iroDu{1997), Abdelkhalek and Dufour
(2998), Dufour and Kiviet (1998), Dufour and Jasiak (20@it)d Dufour and Taamouti (2005).

6. Monte Carlo study
We present simulation results illustrating the perforngant the statistical procedures defined in

the previous sections. Since the number of tests and ditermaodels is so large, we have lim-
ited our results to two groups of data generating proced3€$§) which correspond to different
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symmetric and asymmetric distributions and different fewwhheteroskedasticity. Further, because
for nonlinear regression models an iterative proceduredsired for the estimation g#,, which
makes the convergence of our simulations slow, we restuicsionulations to the linear regression
model where only an analytical formula is needed to estimatg@LS estimator). However, other
simulations results using an exponential regression nigdel, ) = exp(Bx:)], which show that
the proposed tests perform quite well, can be found in Appepd

6.1. Simulated models

We assess the performance of the proposed POS test by campiarsize and power to those of
some other tests, under various general DGPs. We choose@las b illustrate performance in
different contexts encountered in practice. We considefdhowing linear regression model

yt:xtﬂ+5t7t:17"'unu (61)

whereg is an unknown parameter and the errefses, ..., €, are independent and follow different
distributions (DGPSs), so they are not necessarily idelyichstributed. The first group of DGPs
that we examine represents different symmetric and asynuiistributions of the error term;:
1. normal distribution:z, ~ N (0, 1);
2. Cauchy distributionz; ~ Cauchy;
3. Studentt distribution with two degrees of freedom; ~ t(2);
4. Mixture of normal and Cauchy distributions; ~ s, | ¢ | —(1 — s;) | eV |, wherec{ follows
Cauchy distributiong}¥ follows N (0, 1) distribution and
1

P(St: 1) = P(St:()) = 5

The second group of DGPs represents different forms of bstedasticity:

5. break in variance:
fort #25

(0,1)
{\/WN(O, ) fort=25"

1
6. exponential variances; ~ N(0,02(t)) ando.(t) = exp(0.5 t);
7. GARCH(1, 1) plus jump variance:

o2(t) = 0.00037 4 0.08887 ; + 0.90240%(t — 1),

(0,02(t)) fort#25
ot {50]\7( o2(t)) fort=25 °

6

We use GAUSS for the simulations. For nonlinear regressiodah it takes around 5 days and 7 hours to calculate
the empirical size and power, whereas for linear model #sgkdays and 3 hours. Some characteristics of the computer
hardware employed are:

(1) Memory (RAM): 3.00 GB;
(2) AMD Athlon(tm) 64X2 Dual Core Processor 4200+ 2.21 GHz.
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8. nonstationary GARCH, 1) variance:s; ~ N(0,02(t)) and
o2(t) = 0.75¢7_1 + 0.7502(t — 1) .

We use POS test and other tests, which are supposed to bé aglaursst heteroskedasticity and
non-normality, to test the null hypothest, : 5 = 0. We run Monte Carlo simulations to compare
the size and power dfo% split-sample POS tests (hereaft€fi SS-POS test) to those of T-test, T-
test based on White's (1980) variance correction (henedfftE-test), and sign-based test proposed
by Campbell and Dufour (1995) (hereafter CD95 test). In wibbbws, the notations CT-test and
CWT-test refer to the T-test and WT-test after size coroegtrespectively. For some DGPs, T-
test and WT-test may not control size and we adjust the powsstibns such that CT-test and
CWT-test control their size. In our simulations the exptana variablez, is generated from a
mixture of normal andy? distributions. We perform\/; = 10000 simulations to evaluate the
probability distribution of POS test statistic add, = 5000 simulations to estimate the power
functions of POS test and other tests. All simulated samgilesf sizen = 50. The sign-based test
statistic of Campbell and Dufour (1995) has a discrete itigion and it is not possible (without
randomization) to obtain test whose size is preci$ély In our simulations study, the size of this
test is5.95% for n = 50.

6.2. Simulation results

Monte Carlo simulation results are presented in Table6lland Figures 6.1-6.1. These results
correspond to different DGPs described in Section 6.1.€86I1-6.1 show the power envelope of
POS test, the size and power of POS test under differenhattee hypotheses and using different
split-sample sizes, and size and power of T-test (CT;t&8f)-test (CWT-test), and CD95 test.
Figures 6.1-6.1 compare the powerlofo SS-POS test, T-test (CT-test), WT-test (CWT-test), and
CD95 test to the power envelope. The results are detailexivbel

First, Panel A of Table 6.1 and Panel A of Figure 6.1 correddorthe case where the error term
g¢ in the model (6.1) is normally distributed. Panel A of Tabl& shows that the power of POS test
depends on the alternative hypotheSis When the latter is far from the null hypothesis, the POS
test power’s curve moves away from the power envelope [seeRanel A of Figure 4.1]. However,
using approximately 0% of sample to estimatg; yields a power which is typically very close to
the power envelope. Thus, split-sample approach repesegbod way to select the appropriate
alternative hypothesis at which the power of POS test is mizeid.

The T-test based on White’s (1980) variance correction Vgastest, does not control size and
its power after size correction is presented in the lastroalef Panel A of Table 6.1. Panel A of
Figure 6.1 shows that T-test is more powerful thafi; SS-POS test, CWT-tesind CD95 test. We
expect to get the latter result, since under normality Titethe most powerful test. However, the
power of10% SS-POS test is very close to the power envelope and does thetteCD95 test.

Second, Panel B of Table 6.1 and Panel B of Figure 6.1 and PaokFigure 6.1 correspond
to the cases where the error terpfollows Cauchy distribution and Student’s distributiortiwiwo
degrees of freedom, respectively. We see again that thermf©S test depends on the alternative
hypothesiss,. Particularly, when the alternative hypothesis is far frima null hypothesis, the
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Table 1.Power comparisons: different tests
Normal and Cauchy error distributions

A. Normal distribution

POS test SS-POS test Other tests
8 PE £,=02 (=04 4% 10% 20% 40% CD95test T-test WT-test CWT-test

0.0000 5.20 5.14 5.34 4.82 4.88 5.36 4.78 5.94 4.88 7.52 4.94

0.0005 7.44 5.96 6.50 7.58 7.44 6.62 6.78 6.96 7.42 10.70 7.30

0.0010 9.20 8.24 7.96 9.98 9.82 9.48 8.20 8.24 11.40 15.40 11.50
0.0015 12.78 11.28 10.24 12.60 12.90 12.76 11.04 10.06 16.24  20.08 16.50
0.0020 16.34 13.34 11.96 16.28 16.18 17.26 13.18 11.02 21.70  26.78 20.68
0.0025 21.38 16.36 14.02 20.56 21.80 21.70 15.76 14.12 2942  34.42 27.74
0.0030 27.74 20.74 17.62 26.08 25.84 27.26 18.74 17.02 39.32 41.20 34.24
0.0035 33.26 23.48 20.86 32.44 32.08 3142 23.28 19.22 45.22  49.16 43.48
0.0040 38.14 28.28 23.46 36.40 39.08 37.52 24.88 21.56 55.36  58.52 52.38
0.0045 44.68 32.68 27.68 43.28 44.10 44.30 28.14 23.46 62.38 66.96 57.44
0.0050 52.20 36.68 29.70 49.44 51.74 50.60 35.24 27.50 71.04 73.16 67.32
0.0055 57.76 40.78 33.50 55.42 56.68 56.06 38.64 29.80 79.16  79.92 74.70
0.0060 63.92 45.44 37.26 60.78 63.12 62.62 42.44 32.30 84.18 85.70 80.84
0.0065 69.22 47.66 40.68 66.44 68.00 68.90 46.74 34.78 89.58 89.74 85.06

B. Cauchy distribution

POS test SS-POS test Other tests
3 PE 8,=02 B, =04 4% 10%  20% 40% CD95test T-test WT-test

0.000 5.10 4.88 4.80 5.02 5.30 5.48 4.46 5.78 5.68 3.94

0.005 34.22 25.18 20.94 26.72 33.30 30.86 23.48 18.44 9.50 15.00
0.010 66.38 48.42 39.58 50.46 61.74 62.28 47.86 35.16 16.60  28.92
0.015 84.44 62.56 52.94 64.74 76.24 77.02 64.38 48.90 25.76  43.82
0.020 92.20 74.30 63.08 74.36 84.90 85.14 73.70 60.36 36.28  54.72
0.025 96.44 79.62 69.60 79.06 89.88 88.82 81.78 69.58 42.74  62.08
0.030 98.12 82.86 74.30 81.08 9292 92,58 84.70 76.60 50.14 67.06
0.035 99.00 86.02 78.36 82.86 93.70 93.10 88.38 81.88 56.00 70.72
0.040 99.36 89.16 79.60 85.62 94.70 94.30 90.76 86.42 60.56 73.34
0.045 99.68 89.92 81.88 85.74 94.92 95.74 92.24 88.84 63.30 77.18
0.050 99.80 91.12 84.24 86.76 9592 95.92 93.00 91.18 66.60 78.70
0.055 99.98 91.94 86.20 87.14 96.42 96.48 94.56 92.98 69.88  81.30
0.060 99.94 92.50 86.38 87.08 97.02 96.18 95.96 94.16 72.72  82.96
0.065 99.94 93.08 86.84 88.02 96.86 96.90 96.92 94.68 74.10 83.22

Note: These tables show the power envelope of POS test (PE) ambther of: (1) POS test under different alternative hypotheses (POS (&3tPOS test
using different split-sample sizes (SS-POS tgf) sign-based test of Campbell and Dufour (1995) [CD95 t€4)]T-test (5) T-test based on White's (1980)
variance correction (WT-test); ar{8) WT-test after size correction (CWT-test). Panel A corresjoto the case where the error termin the model (6.1) is
homoskedastic and normally distributed and Panel B coorefpto the case whetg is homoskedastic and follows a Cauchy distribution.



Figure 7.Power comparisons: different tests
Normal and Cauchy error distributions

A. Normal distribution
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Note: These figures compare the power envelope (PE)liche power curves af0% split-sample
POS test [0% SS-POS test](2) T-test (or CT-test)}(3) sign-based test proposed by Campbell
and Dufour (1995) [CD95 test]; an@) the T-test based on White's (1980) variance correction
[WT-test or CWT-test]. Panel A corresponds to the case whegeerror terme; in the model
(6.1) is homoskedastic and normally distributed and PanebiBesponds to the case whereis

homoskedastic and follows Cauchy distribution.
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Table 2.Power comparisons: different tests
Mixture and normal distribution with break

A. Mixture distribution

POS test SS-POS test Other tests
8 PE 6,=02 p,=04 4% 10% 20% 40% CD95test T-test WT-test CT-test CWT-test

0.000 4.96 5.30 4.90 4.58 4.70 5.02 5.18 5.98 9.92 10.74 5.08 5.04

0.001 9.96 8.08 8.14 8.86 9.98 9.16 8.02 8.94 11.28 13.12 5.90 7.92

0.002 15.70 11.52 11.30 14.46 15.90 14.60 12.24 11.76 13.98 18.88 7.50 12.94
0.003 25.26 18.48 14.24 22.00 24.76 24.60 19.64 15.72 16.90 25.76 10.10 18.74
0.004 35.46 23.84 18.12 29.60 34.08 34.28 27.36 21.00 20.68 31.76 11.82 25.68
0.005 46.08 28.70 23.66 39.16 44.14 4296 34.60 26.24 24.32  40.04 14.64 31.74
0.006 56.68 35.52 27.56 47.44 51.78 52.06 41.22 29.72 28.24  47.06 18.16 37.82
0.007 67.64 40.66 32.30 55.34 61.90 61.84 51.16 34.06 33.00 51.22 21.92 44.76
0.008 75.00 45.32 37.46 60.44 69.48 69.50 60.10 38.96 36.62 56.70 24.56 49.14
0.009 82.06 50.40 39.64 67.28 76.52 75.32 66.68 44.22 40.16  60.50 30.18 54.60
0.010 88.48 54.90 43.24 70.70  80.84 7990 73.68 49.58 45.86 63.74 33.64 58.80
0.011 90.68 58.48 45.24 73.92 84.16 84.94 79.92 52.40 48.60 66.90 38.06 61.70
0.012 94.38 62.44 50.78 77.44 87.66 87.42 85.18 58.54 51.16  69.26 39.72 65.62
0.013 95.70 65.76 53.12 78.82 90.54 89.22 88.64 60.10 55.26 72.16 43.66 67.42

B. Normal distribution with break in variance

POS test SS-POS test Other tests
8 PE 6,=02 p;,=04 4% 10% 20% 40% CD95test T-test WT-test

0.0000 5.40 4.98 4.92 4.84 5.24 5.10 4.96 5.78 0.01 0.16
0.0008 9.22 7.96 7.90 8.28 9.32 8.38 7.68 8.24 0.04 0.42
0.0016 14.78 12.00 10.18 13.12  13.76 1298 10.42 10.44 0.06 0.60
0.0024 20.16 15.88 14.62 18.20 20.12 19.86 15.58 12.98 0.12 1.08
0.0032 29.32 22.12 19.60 2524 2834 28.26 19.64 17.34 0.30 1.62
0.0040 39.04 27.96 25.38 35.72 38.32 38.68 25.24 21.40 0.22 1.86
0.0048 49.78 35.70 29.12 43.98 47.00 48.06 32.38 26.12 0.46 2.30
0.0056 59.66 41.62 34.12 52.82 59.16 58.24 39.78 30.42 0.84 3.60
0.0064 68.88 48.50 39.14 62.30 67.90 67.28 45.96 34.78 0.78 4.58
0.0072 77.32 55.90 45.30 68.78 75.66 76.50 53.54 38.38 0.94 4.88
0.0080 83.96 61.90 51.68 76.14 83.14 82.20 60.92 42.72 0.94 5.88
0.0088 88.76 65.90 55.52 80.14 88.00 88.50 67.46 47.04 1.22  6.54
0.0096 92.22 72.94 60.32 85.60 91.70 93.02 73.06 51.76 1.50 8.14
0.0104 95.42 78.52 64.48 87.42 94.68 95.34 79.76 55.02 1.42 7.88

Note: These tables show the power envelope of POS test (PE) apdwer of: (1) POS test under different alternative hypotheses (POS (8$BOS test using
different split-sample sizes (SS-POS te€3);sign-based test of Campbell and Dufour (1995) [CD95 t¢4)]T-test (5) T-test based on White's (1980) variance
correction (WT-test)(6) T-test after size correction (CT-test); af¥) WT-test after size correction (CWT-test). Panel A corresfsoto the case where the error
terme; in the model (6.1) follows a mixture of normal and Cauchyrilisttions and Panel B corresponds to the case whef@lows a normal distribution with
Break in variance.



Figure 8.Power comparisons: different tests
Mixture and normal error distribution with break

A. Mixture distribution
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Note: These figures compare the power envelope (PE(lipthe power curves of0% split-sample POS test(% SS-
POS test](2) T-test (or CT-test)(3) sign-based test proposed by Campbell and Dufour (1995) §aB&t]; and4) the
T-test based on White's (1980) variance correction [WT-0esCWT-test]. Panel A corresponds to the case where the
error terme; in the model (6.1) follows a mixture of normal and Cauchy rilisitions and Panel B corresponds to the
case where; follows a normal distribution with break in variance.
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Table 3.Power comparisons: different tests
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance

POS test SS-POS test Other tests
8 PE 6,=02 p,=04 4% 10% 20% 40% CD95test T-test WT-test

0.0000 5.07 5.74 4.98 4.70 5.24 5.40 5.04 6.42 1.22 4.96

0.0003 11.98 9.06 9.16 11.18 11.02 10.76 7.86 8.06 2.36 8.92

0.0006 21.28 15.50 12.90 19.38  19.20 18.84 10.74 12.18 5.00 14.60
0.0009 32.80 21.00 18.14 33.12 31.34 32.12 15.98 17.24 8.90 21.20
0.0012 46.28 28.14 23.90 42,46  42.46 42.72 19.98 21.90 13.36  27.16
0.0015 53.62 34.62 28.20 53.52 52.70 52.20 24.56 25.86 16.76  30.86
0.0018 62.24 39.10 33.74 61.36 59.00 60.40 28.80 30.12 19.06  36.58
0.0021 70.22 46.06 38.10 67.52 66.44 66.14 31.96 34.44 24.20 42.58
0.0024 74.66 48.74 40.72 73.66 7194 71.80 36.28 37.68 27.26  45.10
0.0027 78.28 50.88 43.94 77.36 7598 7544 38.98 40.12 29.22  48.82
0.0030 80.72 54.04 47.76 79.96 79.22 79.66 41.54 44.32 32.40 51.02
0.0033 84.22 56.12 51.80 82.76 81.38 82.62  44.96 46.72 36.10 55.08
0.0036 85.42 58.82 53.44 84.46 83.52 84.50 47.00 47.84 38.32  56.42
0.0039 87.66 60.52 54.78 86.58 85.76 85.94 49.18 51.04 41.22  60.18

B. Normal distribution with non stationary GARCH (1, 1) variance

POS test SS-POS test Other tests
I} PE 6,=02 (=04 4% 10% 20% 40% CD95test T-test WT-test

0.000 5.95 5.58 6.08 6.02 5.76 6.04 6.16 6.26 0.94 5.00

0.005 37.34 29.68 27.72 39.04 40.28 39.00 28.78 23.58 14.26  34.18
0.010 57.36 44.54 41.36 58.86 56.58 58.04 42.64 39.78 27.00 51.22
0.015 67.30 56.54 53.58 67.92 66.54 68.00 49.70 49.84 35.00 60.44
0.020 73.46 63.76 60.56 73.64 73.16 73.36 58.74 58.04 42.04 67.28
0.025 79.02 67.86 64.70 80.60 77.64 78.04 62.34 65.88 47.16  72.36
0.030 81.66 72.50 69.38 82.18 80.88 81.88 66.60 69.72 50.90 75.14
0.035 84.58 74.72 72.56 85.40 83.42 82.80 69.18 74.78 54.22  78.24
0.040 85.82 77.86 75.08 86.86 85.30 84.82 71.84 77.82 57.52  80.04
0.045 88.46 80.52 77.20 87.98 86.90 86.12 75.46 80.44 61.18 82.96
0.050 89.02 81.48 79.22 89.92 89.10 88.98 77.84 83.04 62.48 84.34
0.055 90.04 83.20 81.00 89.94 89.94 89.22 79.08 83.82 64.16  84.88
0.060 91.76 84.52 81.96 91.14 90.10 90.50 80.86 85.70 67.20 87.26
0.065 91.82 85.22 83.22 91.30 90.86 91.12 82.38 87.00 68.80  88.22

Note: These tables show the power envelope of POS test (PE) apdwer of: (1) POS test under different alternative hypotheses (POS (8$BOS test using
different split-sample sizes (SS-POS te$8); sign-based test of Campbell and Dufour (1995) [CD95 tédl]T-test and(5) T-test based on White's (1980)
variance correction (WT-test). Panel A corresponds to #se evhere the error term in the model (6.1) follows a normal distribution with GARCH 1) plus
jump variance and Panel B corresponds to the case whéodows a normal distribution with non stationary GARCH 1) variance.
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Figure 9.Power comparisons: different tests
GARCH error distributions

A. Normal distribution with GARCH (1, 1) plus jump variance
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Note: These figures compare the power envelope (PE)liche power curves af0% split-sample
POS test[0% SS-POS test](2) T-test (or CT-test)(3) sign-based test proposed by Campbell and
Dufour (1995) [CD95 test], anf) the T-test based on White’s (1980) variance correction fasI-

or CWT-test]. Panel A corresponds to the case where the &mars, in the model (6.1) follows
normal distribution with GARCKL, 1) plus jump variance and Panel B corresponds to the case
wheree, follows normal distribution with non stationary GARGH 1) variance.
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Figure 10.Power comparisons: different tests
Student and normal error distribution with exponential var iance

A. Student distribution
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B. Normal distribution with exponential variance
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Note: These figures compare the power envelope (PE(lipthe power curves of0% split-sample POS test(% SS-
POS test](2) T-test (or CT-test)(3) sign-based test proposed by Campbell and Dufour (1995) §aB&t]; and4) the
T-test based on White’s (1980) variance correction [WT-tesCWT-test]. Panel A corresponds to the case where the
error terme; in the model (6.1) follows a student distribution with degyf freedom 2 and Panel B corresponds to the
case where; follows a normal distribution with exponential variance.
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power curve of POS test moves away from the power envelogeHagel B of Table 6.1]. We also
see thatl0% represents the appropriate proportion of sample that we toeese for the estimation
of 3. Further, Panel B of Figure 6.1 and Panel A of Figure 6.1 shbatd 0% SS-POS test is more
powerful than T-test, WT-test, and CD95 test, and is closbégower envelope.

Third, Panel A of Table 6.1 and Figure 6.1, Panels A and B oféfédl, and Panels A and B of
Figure 6.1 correspond to the cases where the errordefallows a mixture of normal and Cauchy
distributions, normal distribution with GARCH, 1) plus jump variance, and normal distribution
with non stationary GARCHL, 1) variance, respectively. The results, in terms of the impagt;
on the power function of POS test and the appropriate prigpodf sample to use in estimating
(3, are similar to those of previous cases. Further, Panel AigafrE 6.1 and Panels A and B of
Figure 6.1 show that0% SS-POS test is again more powerful than T-test, WT-@B05 test, and
is very close to the power envelope. Wherfollows the mixture distribution, WT-test and T-test
do not control size and we adjust their power functions shah€@€WT-test and CT-test control size.
Interestingly, even if GARCHL, 1) and non stationary GARCH, 1) models do not satisfy they
key assumption (2.1), POS test still controls size and hesg@od power.

Finally, Panel B of Table 6.1 and Figure 6.1 and Panel B of iédiil correspond the cases
wheree, follows normal distribution with a break in variance and ap@nential variance, respec-
tively. In these cases, the powers of T-test and WT-test eng weak and flatwhereas thd 0%
SS-POS test does well and is more powerful than sign-basedrtgposed by Campbell and Dufour
(1995).

From the previous results we draw the following conclusidfisst, it is clear that the alternative
hypothesis has an impact on the power function of POS tesbrfsle the adaptive approach based
on split-sample technique allows to choose an optimal vafube alternative hypothesis at which
the power of POS test is maximized. We should use a small @aproximatelyl0%, of sample
to estimate the alternative hypothesis and the 885%;, to compute the test statistic of POS test.
Third, when the error term; follows normal and heteroskedastic distributions, the groaf 10%
SS-POStest is close to the power envelope. For non-normoasehis is not the case and the power
of 10% SS-POS test is somewhat far from the power envelope. Fjredtept for a normally and
homoskedastic distributed errdi)% SS-POS test performs better than T-test (CT-test), WT-test
(CWT-test), and CD95 test

We also use simulations to compare the powet @ SS-POS test calculated using the true
weights with the power 0f0% SS-POS test computed using normal weights. The weiglits, )
are computed using homoskedastic and normal distribufibe.results are presented in Table 6.2.
We see that using the true weights may improve the powgi BfSS-POS test. However, the power
loss when we substitute the true weights by normal weighterig small.

7. Conclusion

We propose exact POS-based tests to test the parameteesdaritext of linear and nonlinear re-
gression models with fixed regressors. These tests ariodigin-free, robust against heteroskedas-
ticity of an unknown form, and they may be inverted to obtaimfcdence sets for the vector of
unknown parameters.
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Table 4.True weights versus normal weights

A. True weights using Cauchy distribution

SS-POS test using true weights  SS-POS test using normatseig

3 PE 10% 20% 10% 20%
0.000  5.10 5.16 5.16 5.30 5.48
0.005  34.22 33.58 31.18 33.30 30.86
0.010  66.38 61.94 62.47 61.74 62.28
0.015  84.44 80.32 80.32 76.24 77.02
0.020  92.20 89.76 89.76 84.90 85.14
0.025  96.44 95.22 95.22 89.88 88.82
0.030  98.12 96.98 96.98 92.92 92.58
0.035  99.00 98.26 98.26 93.70 93.10
0.040  99.36 99.14 99.14 94.70 94.30
0.045  99.68 99.30 99.30 94.92 95.74
0.050  99.80 99.44 99.44 95.92 95.92
0.055  99.98 99.70 99.70 96.42 96.48
0.060  99.94 99.82 99.82 97.02 96.18
0.065  99.94 99.90 99.90 96.86 96.90

B. True weights using mixture distribution

SS-POS test with true weights  SS-POS test with normal weight

I} PE 10% 20% 10% 20%
0.000 4.96 4.74 5.26 4.70 5.02
0.001 9.96 8.96 9.08 9.98 9.16
0.002 15.70 14.34 16.70 15.90 14.60
0.003 25.26 24.84 24.67 24.76 24.60
0.004 35.46 34.52 34.46 34.08 34.28
0.005 46.08 44.26 44.06 44.14 42.96
0.006 56.68 53.24 54.96 51.78 52.06
0.007 67.64 62.92 62.88 61.90 61.84
0.008 75.00 71.66 70.14 69.48 69.50
0.009 82.06 79.24 79.54 76.52 75.32
0.010 88.48 85.52 84.34 80.84 79.90
0.011 90.68 88.80 89.22 84.16 84.94
0.012 94.38 92.06 91.50 87.66 87.42
0.013 95.70 94.32 94.62 90.54 89.22

Note: These tables summarize the results of the comparison betthe power 0l 0% split-sample POS test (SS-POS
test) calculated using the true weightg3,) with the power of10% split-sample POS test calculated using normal
weights. In Panel A the true weights correspond to the caszenhe error term; in the model (6.1) follows a Cauchy
distribution and in Panel B the true weights correspond éddse where, follows a mixture of normal and Cauchy
distributions. SS-POS test corresponds to split-sampl® fe6t. PE corresponds to the power envelop.
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Since the proposed POS test maximizes the power at a givea ohthe alternative, we suggest
an approach based on split-sample technique to choose iamabptternative such that the power
of POS test is close to the power envelope. The simulatiantseshow that using approximately
10% of sample to estimate the alternative hypothesis and thé¢X@%) to compute the test statistic
of POS test, yields a power which is typically very close t® plower envelope.

To assess the performance of POS test we run a Monte Carldasiomustudy and compare its
size and power to those of some other tests, under varioweragJddGPs. We consider different
DGPs to illustrate different contexts that one can encauntgractice. We use two groups of DGPs
which correspond to different symmetric and asymmetritriistions and different heteroskedas-
ticity forms. The results show thad% split-sample POS test is more powerful than T-test, Camp-
bell and Dufour’s (1995) sign-based test, T-test with Wki{@980) variance correction, and it is
close to the power envelope.

The present paper could be generalized to the case whengilaeatory variables are stochastic
by relaxing the assumption (2.1). This issue is the topice§oing research.

A. Appendix: Proofs

PROOF OFTHEOREM4.1. Conditionally onX the characteristic function &N, (5,|5;) is given
by:

sy ()= Bx lexp(in SN; (0015))] = Ex | TJexp (s |- 2o 2 @))] ,

t=1

wherep(zy, By, 1 | X) = Pler < f(w4, Bo) — f(@, 51) | X], u € R, §¢ =y — f(a1, By) and the
complex numbef = v/—1. Since conditional orX the random variableg, fort =1, ... , n, are
independent

Ponil) = f[lEX {exp (“‘ 1“[1;<thﬁ’0’foélﬂ|1)|(§()} S@Jﬂ
(B s o 52254
|

1—|—<e <zu m[ (p(%ﬂo’ ﬂl'X)D_l) (1_P[at<f<xt,ﬁo>—f<xt,ﬁ>|X1>}
I+ (

P\ T, ﬁ07 61 | X)
exp (zu In |: —p(xuﬁov 61 | X):|) _ 1) (1 _p(xt,ﬁ(y 6 | X)):| (Al)
Given the conditional characteristic function (A.1), amslard Fourier-inversion formula [see
Gil-Pelaez (1951)] implies that the conditional distribat function of SN;:(5,|3,) evaluated at

Il
=

t

1

u:j: i

(wtaﬁ(h ﬂl |X)
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61(607 ﬁl)v for 01(507 ﬁl) € R> is given by

P(SN;(BolB1) < e1(By, B1) | X) = 2 du, (A.2)

u

Y m {exp (—~iuei (B, 1)) dsy ()}
0

where,Y u € R,

n

ot i o (o [ SEA]) - 0]

andIm{z} denotes the imaginary part of a complex numbefhus, the power function of POS
test is given by the following probability function:

(B, 31) = P[SN;(BolB1) > c1(By, B1)] = 5= du.

u

L tm {exp (—iuei (B, 1)) dsny ()}
0

O

B. Appendix: Additional simulation results using nonlinear regres-
sion model

In this appendix, we consider a nonlinear DGP to assess tffierpance (size and power) of the
proposed POS test:
yr = exp(fBzy) + &4, (B.3)

where we assume three different distributions for the deamne; :

1. Normal distribution:e; ~ N (0, 1);

2. Mixture of normal and Cauchy distributions; ~ s; | ¢ | —(1 — s;) | €
Cauchy distributions}¥ follows N (0, 1) distribution andP (s; = 1) = P (s;
3. GARCH(1, 1) plus jump variance:

N(0,02(t)) for t+#25
“t 50 N(0,02(t)) for t = 25

N |, wheree{ follows
=0) = 1.
=0) =3

and
o2(t) = 0.00037 4 0.0888¢7_; + 0.90240%(t — 1).

The results are presented in Figure 6.1. The latter showthikgiroposed tests perform quite well
even in the context of a nonlinear model. We also seeltifdtrepresents the appropriate proportion
of sample that one needs to use for the estimation of thenatiee hypothesig, .
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Normal, Mixture and GARCH with jump error distributions
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