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ABSTRACT

We study the relationship between VARMA and factor representations ettmwstochastic pro-
cess. We observe that, in general, vector time series and factors catiméllow finite-order VAR
models. Instead, a VAR factor dynamics induces a VARMA process, whittRaprocess entails
VARMA factors. We propose to combine factor and VARMA modeling by usaajor-augmented
VARMA (FAVARMA) models. This approach is applied to forecasting key m&conomic ag-
gregates using large U.S. and Canadian monthly panels. The results sttéWWARMA models
yield substantial improvements over standard factor models, including @regigesentations of the
effect and transmission of monetary policy.

Key words: factor analysis, VARMA process, forecasting, structural analysis.
Journal of Economic Literature classification: C32, C51, C52, C53.



SUMMARY

We study the relationship between VARMA and factor representations et@wstochastic pro-
cess, and we propose to use factor-augmented VARMA (FAVARMA) nsoae an alternative to
usual VAR models. We start by observing that vector time series and theiaesl factors do not
both follow a finite-order VAR process, except in very special ca¥éisen factors are defined as
linear combinations of observable series, the observable series follMARIBIA process, not a
finite-order VAR as typically assumed. Second, even if the factors follimita-order VAR model,
this entails a VARMA representation for the observable series. In viewesktlobservations, we
propose to use a FAVARMA framework which combines two dimension redutgichniques in or-
der to represent the dynamic interactions between a large number of tinge &&eter analysis and
VARMA modeling. We apply this approach in two out-of-sample forecastirgg@ses using large
U.S. and Canadian monthly panels. The results show that VARMA factowsdar better forecasts
for several key macroeconomic aggregates relative to standard factiels. Finally, we estimate
the effect of monetary policy using the data and the identification schemerohBee, Boivin and
Eliasz (2005). We find that impulse responses from a parsimonious@-fe&/ARMA(2,1) model
give an accurate and plausible picture of the effect and transmissionradtarg policy in the U.S.
To get similar responses from a standard FAVAR model, the Akaike informatiterion leads to a
lag order of 14. The FAVARMA model requires the estimation of 84 coefiitsién order to repre-
sent the system dynamics, while the corresponding FAVAR model inclub2¥AR parameters.
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1. INTRODUCTION

As information technology improves, the availability of economic and financial sienes grows
in terms of both time and cross-section size. However, a large amount ofmiation can lead
to a dimensionality problem when standard time series tools are used. Sincefrtieeste series
are correlated, at least within some categories, their co-variability andriafeon content can be
approximated by a smaller number of variables. A popular way to addregsahésis to use “large
dimensional approximate factor analysis”, an extension of classical fac#bysis which allows for
limited cross-section and time correlations among idiosyncratic components.

While factor models were introduced in macroeconomics and finance byrfame Sims
(1977), Geweke (1977), and Chamberlain and Rothschild (1983), thatlite on the large factor
models starts with Forni, Hallin, Lippi and Reichlin (2000) and Stock and Wa{8002). Further
theoretical advances were made, among others, by Bai and Ng (B2022003), and Forni, Hallin,
Lippi and Reichlin (2004). These models can be used to forecast ntacramic aggregates [Stock
and Watson (2002b), Forni, Hallin, Lippi and Reichlin (2005), Banerdarcellino and Masten
(2006)], structural macroeconomic analysis [Bernanke et al. (26@&kro, Marcellino and Neglia
(2005)], for nowcasting and economic monitoring [Giannone, Reichling&méll (2008), Aruoba,
Diebold and Scotti (2009)], to deal with weak instruments [Bai and Ng @Z0Kapetanios and
Marcellino (2010)], and the estimation of dynamic stochastic general equititbmodels [Boivin
and Giannoni (2006)].

Vector autoregressive moving-average (VARMA) models provide amotlay to obtain a par-
simonious representation of a vector stochastic process. VARMA modespeeially appro-
priate in forecasting, since they can represent the dynamic relationseretimee series while
keeping the number of parameters low; see Litkepohl (1987) and Blabdje Dufour and Roy
(1992). Further, VARMA structures emerge as reduced-form sgmtations of structural models
in macroeconomics. For instance, the linear solution of a standard dynactiestic general equi-
librium model generally implies a VARMA representation on the observablegambus variables
[Ravenna (2006), Komunjer and Ng (2011), and Poskitt (2011)].

In this paper, we study the relationship between VARMA and factor reptations of a vector
stochastic process, and we propose a new class of factor-augmexiA/models. We start
by observing that, in general, multivariate time series and the associatetsfdotoot typically
both follow finite-order VAR processes. When the factors are obtaisdth@ar combinations of
observable series, the dynamic process obeys a VARMA model, not adidiée-VAR as usually
assumed in the literature. Further, if the latent factors follow a finite-orédét process, this im-
plies a VARMA representation for the observable series. Consequemlyropose to combine
two techniques for representing in a parsimonious way the dynamic interadt&ween a huge
number of time series: dynamic factor reduction and VARMA modelling. Thus lsato consider
factor-augmented VARMA (FAVARMA) models.Besides parsimony, the ctdS$ARMA models
is closed under marginalization and linear transformations (in contrast wikh pMacesses). This
represents an additional advantage if the number of factors is underestima

The importance of the factor process specification depends on the teelusigd to estimate the
factor model and the research goal. In the two-step method developeddkye®d Watson (2002),



the factor process does not matter for the approximation of factors, isutnight be an issue if
we use a likelihood-based technique which relies on a completely specifiedsst Moreover, if
predicting observable variables depends on factor forecasting, bleediad parsimonious approx-
imation of the factor dynamic process is important. In Deistler, Anderson, FHliener and Chen
(2010), the authors study identification of the generalized dynamic factdelnadere the common
component has a singular rational spectral density. Under the assurtiiamansfer functions
are tall and zeroles$.€., the number of common shocks is less than the number of static factors),
they argue that static factors have a finite-order AR singular repreentehich can be estimated
by generalized Yule-Walker equations. Note that Yule-Walker equatimms@ unique for such
systems, but Deistler, Filler and Funovits (2011) propose a particulanazai form for estimation
purposes.

After showing that FAVARMA models yield a theoretically consistent spedifica we study
whether VARMA factors can help in forecasting time series. We compareotieedsting perfor-
mance (in terms of MSE) of four FAVARMA specifications, with standard ARARMA (p, g) and
factor models where the factor dynamics is approximated by a finite-order XA out-of-sample
forecasting exercise is performed using a U.S. monthly panel from B@iannoni and Stevanavi
(2009).

The results show that VARMA factors help in predicting several key nemoomic aggre-
gates, relative to standard factor models, and across differentafiieg horizons. We find im-
portant gains, up to a reduction of 42% in MSE, when forecasting thethrates of industrial
production, employment and consumer price index inflation. In particukalFAVARMA specifi-
cations generally outperform the VAR-factor forecasting models. Werafsart simulation results
which show that VARMA factor modelling noticeably improves forecasting in fisémples.

Finally, we perform a structural factor analysis exercise. We estimatdféet ef a monetary
policy shock using the data and identification scheme of Bernanke et 8b)(2W/e find that im-
pulse responses from a parsimonious 6-factor FAVAR®IA) model give a precise and plausible
picture of the effect and transmission of monetary policy in the U.S. To get sire#ponses from
a standard FAVAR model, the Akaike information criterion leads to a lag orfdé4.0So we need
to estimate 84 coefficients governing the factor dynamics in the FAVARMA freomie while the
FAVAR model requires 510 VAR parameters.

In Section 2, we summarize some important results on linear transformatioestof gtochastic
processes and present four identified VARMA forms. In Section 3, twdysthe link between
VARMA and factor representations. The FAVARMA model is proposeddnt®n 4, and estimation
is discussed in Section 5. Monte Carlo simulations are discussed in Sectioheenipirical
forecasting exercise is presented in Section 7, and the structural iarinlgection 8. Proofs and
simulation results are reported in Appendix.

2. FRAMEWORK

In this section, we summarize a number of important results on linear transfonsaf vector
stochastic processes, and we present four identified VARMA forms Wese in forecasting ap-
plications.



2.1. Linear transformations of vector stochastic processes

Exploring the features of transformed processes is important sincerdadéten obtained by tem-
poral and spatial aggregation, and/or transformed through linear fijtégchniques, before they
are used to estimate models and evaluate theories. In macroeconomiasheseaodel dynamic
interactions by specifying a multivariate stochastic process on a small nahéesnomic indica-
tors. Hence, they work on marginalized processes, which can be sdieea transformations of
the original series. Finally, dimension-reduction methods, such as prircpgponents, lead one
to consider linear transformations of the observed series. Early cditribwn these issues include
Zellner and Palm (1974), Rose (1977), Wei (1978), Abraham (1 28%I Litkepohl (1984).

The central result we shall use focuses on linear transformationsl-@fimensional, stationary,
strictly indeterministic stochastic process. Suppgssatisfies the model

X = 3 Ve j=W(L)e, Y=Ik, (2.1)
J;J j

where g; is a weak white noise, witle(g;) = 0, E(&g) = Z¢, defX] > 0, E(XX) = 2x,
EXX ) =Ix(h), W(L) = 32 WL and def¥(z)] # 0 for |z < 1. (2.1) can be interpreted as the
Wold representation of;, in which cases; = X — B[ X | % -1, Xt —2,...] andP_ [ X | % —1, X —2,...]

is the best linear forecast 0§ based on its own past.€., & is theinnovation proces®f X).
Consider the following linear transformation Xf.

R=CX (2.2)

whereC is aK x N matrix of rankK. Thenk is also stationary, indeterministic and has zero mean,
so it has an MA representation of the form:

R = %‘Djvt—j =o(Lw, o=k, (2.3)
J:

wherev; is K-dimensional white noise witk(wV;) = Z,. These properties hold whenevéris a
vector stochastic process with an MA representation. If it is invertible, famteinfinite-order VAR
processes are covered.

In practice, only a finite number of parameters can be estimated. ConsiddAtftg process

X = 8t+M18t_1+"'+Mq8t_q = M(L)Et (2.4)

with defM(z)] # 0 for |z < 1 and nonsingular white noise noise covariance maiand aK x N
matrix C with rankK. Then, the transformed procegs= CX has an invertible MAg,.) represen-
tation

R =W+Nv 1+ +Ngw%q =N(L)w (2.5)

with defN(z)] # 0 for |z] < 1, wherev; is aK-dimensional white noise with nonsingular matgiy
eachN; is aK x K coefficient matrix, andj, < q.



Some conditions in the previous results can be relaxed. The nonsingulatiity covariance
matrix > and the full rank ofC are not necessary so there may be exact linear dependencies among
the components of; andF, [see Litkepohl (1984b)]. It is also possible tlyai< g.

It is well known that weak VARMA models are closed under linear tramsédions. LetX; be
anN-dimensional, stable, invertible VARM#, q) process

O(L)X = O(L)& (2.6)

and let C be & x N matrix of rankK < N. Thenk = CX has a VARMA(p,, q.) representation
with p, < (N—K+1)pandg. < (N—K)p—+q; see Lutkepohl (2005, Corollary 11.1.2). A linear
transformation of a finite-order VARMA process still has a finite-orde RI¥AA representation, but
with possibly higher autoregressive and moving-average orders.

When modeling economic time series, the most common specification is a finiteM@Rer
Therefore, it is important to notice that this class of models is not closed wsghecet to linear
transformations reducing the dimensions of the original process.

2.2. ldentified VARMA models

An identification problem arises since the VARMA representatioX;a not unique. There are
several ways to identify the process in@R In the following, we state four unique VARMA rep-
resentations: the well-known final-equation form and three represergatioposed in Dufour and
Pelletier (2013).

Definition 2.1 FINAL AR EQUATION FORM (FAR). The VARMA representation {2.6) is said
to be in final AR equation form iP(L) = ¢(L)In, whereg(L) =1—¢,L —--- — @,LP is a scalar
polynomial withgy, # O.

Definition 2.2 FINAL MA EQUATION FORM (FMA). The VARMA representation (2.6) is said
to be in final MA equation form ®(L) = 6(L)In, whereB(L) = 1—6:L —--- — 64L%is a scalar
polynomial with8q # 0.

Definition 2.3 DIAGONAL MA EQUATION FORM (DMA). The VARMA representation {i2.6)

is said to be in diagonal MA equation form@f(L) = diag[6ii (L)] = In — ©1L — --- — 4L, where
0ii(L) =1—06ji1L—--- — Bji L%, Bii g # 0, and g= maxy<j<n(Gi).
Definition 2.4 DIAGONAL AR EQUATION FORM (DAR). The VARMA representation {2.6) is
said to be in diagonal AR equation formdf(L) = diag; (L)] = In — @1L —--- — @,LP, where
@i (L) =1—@iL— =@ 4L, @ o, # 0, and p= max<i<n(pi)-

The identification of these VARMA representations is discussed in DufodrRelletier (2013,
Section 3). In particular, the identification of diagonal MA form is estabtisheder the simple
assumption of no common root.

From standard results on the linear aggregation of VARMA processes ¢sg., Zellner and
Palm (1974), Rose (1977), Wei (1978), Abraham (1982), anddpadhl (1984)], it is easy to see



that an aggregated process sucliraaslso has an identified VARMA representation in final AR or
MA equation form. But this type of representation may not be attractivediegral reasons. First,
it is far from the usual VAR model, because it excludes lagged valueshef eariables in each
equation. Moreover, the AR coefficients are the same in all equationshwpecally leads to a
high-order AR polynomial. Second, the interaction between differemdbs is modeled through
the MA part of the model, and may be difficult to assess in empirical and stalietalysis.

The diagonal MA form is especially appealing. In contrast with the echiglon [Deistler
and Hannan (1981), Hannan and Deistler (1988), and Lutkepof@l(XChapter 7)], it is relatively
simple and intuitive. In particular, there is no complex structure of zerdiaffonal elements in the
AR and MA operators. For practitioners, this is quite appealing since adaiysgofe;; to theith
equation is a simple natural extension of the VAR model. The MA operator bimspde diagonal
form, so model nonlinearity is reduced and estimation becomes numerically simpler

3. VARMA AND FACTOR REPRESENTATIONS

In this section, we study the link between VARMA and factor representatibasector stochastic
processt, and the dynamic process of the factors. In the theorems below, wessigbadX; is aN-
dimensional regular (strictly indeterministic) discrete-time procedNnX = {X :t ¢ RN, t € 7}
with Wold representation (2.1). In Theore3rl, we postulate a factor model fo§¢ where factors
follow a finite-order VAR process:

X =AR+u (3.1)

whereA is anN x K matrix of factor loadings with ranK, andu; is a (weak) white noise process
with covariance matrix,, such that

E[Ry] =0 for allt. (3.2)

We now show that finite-order VAR factors induce a finite-order VARMAgess for the observable
series. Proofs are supplied in the Appendix.

Theorem 3.1 OBSERVABLE PROCESS INDUCED BY FINITEORDERVAR FACTORS Suppose X
satisfies the assumptiof3.1) - (3.2) and k follows the VARp) process

R=®(L)R 1+a (3.3)
such that e= [ : &)’ is a (weaK white noise process with
E[R-j€l] =0for j > 1, ¥, (3.4)

®(L) = @1L—--- — @yLP, and the equatiomleflx — @(z)] = 0 has all its roots outside the unit
circle. Then, for allt E[X_;€] = 0for j > 1, and X has the following representations:

AlL)X =B(L)a, (3.5)



AL)X = P(L)e, (3.6)

where AL) = [| —A®(L)(A'A)IAL], B(L) = [A(L)A], W(L) = p§1q7,-|_i with @ = "glw,-_i,
j=0 i=0

the matrices#; are the coefficients of the Wold representafi@ri), ande; is the innovation process
of %.

This result can be extended to the case where the factors have VARM@Asamntations. It is
not surprising that the induced processXpis again a finite-order VARMA, though possibly with
a different MA order. This is summarized in the following theorem.

Theorem 3.2 OBSERVABLE PROCESS INDUCED BWARMA FACTORS Suppose p&atisfies the
assumption$3.1) - (3.2) and k follows the VARMAp, q) process

R=®(L)R-1+0(L)a (3-7)

where ¢ = [ : &)’ is a(weak white noise process which satisfies the orthogonality condiBof),
O(L)=PL—---—PLP, O(L) =k —O1L — - -- — O4LY, and the equatiodeflx — ®(z)] = 0 has

all its roots outside the unit circle. Then Kas representations of the for(8.5) and (3.6), with
p>:<

) — e — o —
B(L) = [A(L)IAB(L)), (L) = 3 WL, ¥ = 5 A4 i, and p = max(p+1,q).
j= i=
Note that the usual invertibility assumption on the factor VARMA process (8.t required.
The next issue we consider concerns the factor representatdn @hat are the implications of
the underlying structure of; on the representation of latent factors when the latter are calculated
as linear transformations o§? This is summarized in the following theorem.

Theorem 3.3 DYNAMIC FACTOR MODELS ASSOCIATED WITHVARMA PROCESSES Suppose
R = CX, where C is a K< N full row rank matrix. Then the following properties hold:

(i) if X has a VARMA, q) representation as if2.6), then k has VARMAp., g..) representation
with p, < (N—-K+1)pand g < g+ (N—K)p;

(i) if X; has a VAR(p) representation, theptfas VARMAp., g.) representation with p< Np
and g < (N—1)p;

(iii ) if X; has an MA representation as {2.4), then i has an MAq,) representation with &< g..

From the Wold decomposition of common components, Deistler et al. (20102 gt latent
variables can have ARMA or state-space representations, but gigesinularity and zero-free
nature of transfer functions, they can also be modeled as finite-ordpi@imR processes. The-
orem 3.3 does not assume the existence of a dynamic factor structure, so it holdsyfdinear
aggregation ok;.

Arguments in favor of using a FAVARMA specification can be summarizedksas.



(i) WheneverX; follows a VAR or a VARMA process, the factors defined through a lineassr
sectional transformation (such as principal components) follow a VARM#gss. More-
over, a VAR or VARMA-factor structure oi; entails a VARMA structure fok;.

(i) VARMA representations are more parsimonious, so they easily lead to efitcient estima-
tion and tests. As shown in Dufour and Pelletier (2013), the introduction d¥itheperator
allows for a reduction of the required AR order so we can get more jgrestimates. More-
over, in terms of forecasting accuracy, VARMA models have theoretibarages over the
VAR representation [see Litkepohl (1987)].

(iif) The use of VARMA factors can be viewed from two different persipees. First, if we use
factor analysis as a dimension-reduction method, a VARMA specificationdtuaat process
for factors (Theoren8.3). Second, if factors are given a deep (“structural”) interpretation,
the factor process has intrinsic interest, and a VARMA specification darkae rather than a
finite-order VAR —is an interesting generalization motivated by usual argts¢theoretical
coherence, parsimony, and marginalization. In particular, eventifs a finite-order VAR
representation, subvectorskftypically follow a VARMA process.

4. FACTOR-AUGMENTED VARMA MODELS

We have shown that the observable VARMA process generally indW&REBIA representation for
factors, not a finite-order VAR. Following these results, we proposemsider factor-augmented
VARMA (FAVARMA) models. Following the notation of Stock and Watson (2p0he dynamic
factor model (DFM) where factors have a finite-order VARMA, gs) representation can be written
as

Xe = Ai(L)f+ Uy, (4.1)
e = Oi(L)Uit—1+ Vi, (4.2)
fi = I'(L)ft_1+O(L)r,t, i=1,...,N, t=1,..., T, (4.3)

where f; is q x 1 factor vector, Xi(L) is a 1x q vector of lag polynomials,Xi(L) =
~ ~ ~ Pij ~
(Aiz(L),...,Aig(L)), Ajj(L) = zj)\i,j,kLk, 0i(L) is a pyj-degree lag polynomial[ (L) = L+
k=0
4T LP, O(L) =1 —O1L — --- — 04, LY, andvy is aN-dimensional white noise uncorrelated
with theg-dimensional white noise procegs. The exact DFM is obtained if the following assump-
tion is satisfied:
E(UitUjs):O,Vi,j,t,s, I#J

We obtain the approximate DFM by allowing for cross-section correlationsgntne idiosyncratic
components as in Stock and Watson (2005). We assume the idiosyncratio/grare uncorrelated
with the factorsf; at all leads and lags.
On premultiplying both sides of (4.1) by-15;(L), we get the DFM with serially uncorrelated
idiosyncratic errors:
Xit = Ai(L) fe + 0 (L)Xt -1+ Vit (4.4)



whereA;(L) = [1— d; (L)L]Xi (L). Then, we can rewrite the DFM in the following form:

X = A(L)fi+D(L)X-1+ Vi, (4.5)
fo = FL)fca+o(L)n,, (4.6)
where
)\1(L) 61(L) 0 V1t
AL) = : , D(L)= oo , Ve=|
An(L) 0 <o Op(L) Vnt

To obtain the static version, we suppose thatl) has degreep — 1, and letk =
[, fq,..., ft’fpﬂ}’, where the dimension &% is K, with g < K < qp. Then,

X = AR+u, (4.7)
w = D(L)u_ 14w, (4.8)
R = @L)R-1+GO(L)ny, (4.9)

whereA is aN x K matrix where thd-th row consists of coefficients o’~fi(L), ®(L) contains
coefficients ofl” (L) and zeros, an@ is aK x g matrix which loads (structural) shockg to static
factors (it consists of 1's and 0's). Note that9fL) = | we obtain the static factor model which
has been used to forecast time series [Stock and Watson (2002b) agtb¥katson (2006), Boivin
and Ng (2005)] and study the impact of monetary policy shocks in a FAVARat@ernanke et al.
(2005), Boivin et al. (2009)].

5. ESTIMATION

Several estimation methods have been proposed for factor models andA/pRocesses (sepa-
rately). One possibility is to estimate the system (4.7)-(4.9) simultaneously aftengrdistribu-
tional assumptions on the error terms. This method is already computationaltyldiffihen the
factors have a simple VAR structure. Adding the MA part to the factor m®ogakes this task even
more difficult, for estimating VARMA models is typically not easy.

We use here the two-step Principal Component Analysis (PCA) estimation dhetb® Stock
and Watson (2002) and Bai and Ng (2008) for theoretical resultsecoimg the PCA estimator. In
the first stepfy are computed ak principal components o%. In the second step, we estimate
the VARMA representation (4.9) oi. The number of factors can be estimated through different
procedures proposed by Amengual and Watson (2007), Bai an@082), Bai and Ng (2007),
Hallin and Liska (2007), and Onatski (2009). In forecasting we estima&atimber of factors
using the Bayesian information criterion as in Stock and Watson (2002hle wie number of
factors in the structural FAVARMA model is the same as in Bernanke et@G0SR

The standard estimation methods for VARMA models are maximum likelihood anlihnon
ear least squares. Unfortunately, these methods require nonlinear apitimjizvhich may not be
feasible when the number of parameters is large. Here, we use the GLSdnpetipwsed in Du-



four and Pelletier (2013), which generalizes the regression-batethésn method introduced by
Hannan and Rissanen (1982). Considdét-dimensional zero mean procegsgenerated by the
VARMA (p, ) model:

A(L)Y; = B(L)U; (5.1)

where A(L) = Ik — AL —--- — ApLP, B(L) = Ik = BiL —--- — B4LY, andU; is a weak white
noise. Assume dg&(z)] # 0 for |z < 1 and defB(z)] # 0 for |z] < 1 so the procesy is stable
and invertible. Se#y = (&), ,,..., 8., ), kK= 1,...,K, whereaj, « is the j-th row of A, and
B(L) =diagbs1(L),..., bKK(ﬁ)], bjj(L) =1—bjjiL—--— bjj g, L%, whenB(L) is in MA diagonal
form. Then, when the model is in diagonal MA form, we can write the parasmefdhe VARMA

model as a vectoy = [y;, V,|' wherey; contains the AR parameters apgdthe MA parameters, as
follows:

V1= [8le1,--, Alep,---s Ao ls---, AKep); (5.2)
y2 = [bll,la ceey bll,qy R bKK,la R bKK,qK] . (53)

The estimation method involves three steps.

Step 1.Estimate a VARnt) model by least squares, where < T /(2K), and compute the resid-

uals:
nr

U =Y, —I;ﬁ. (7)Y - (5.4)

Step 2. From the residuals of step 1, complff@ = %th:nTHOtO{, i.e. the corresponding esti-
mate of the covariance matrix bf, and apply GLS to the multivariate regression

A(L)Y: = [B(L) — Ik]Ut +& (5.5)

to get estimateé(L) andl§(L). The estimator is
<5 s 15 S RLPY 1
y= [ZZ{_lzJ Zi 4] ZZ{—lzJ Y (5.6)
t= t=

with | = nr +max(p, q) + 1. Setting

Yio1(P) = [Yit-1:--> YKt-1s--+> Yit—ps---»> YK t—pl » (5.7)
Ut—l - [Gl,t—lv sy OK,t—la sy Ol,t—Q7 sy GK,t—q] ) lI:Ik,tfl = [Gk,tfly ceey Ok,tqu] ) (58)

the matrixZ;_; is defined as

Yia(p) - 0 Oup g -+ 0
Zt_]_: . . . . .



Step 3.Using the second step estimates, form new residuals
U=Y%— ZlAiYH + Z BjUt—j
i= =1
with U; = 0 fort < max(p, g), and define
q q _ - . a . . -
X = Z BiX—j+Y, W= Z BW_j+U, t = Z BM-j+4,
=1 =1 =1

whereX, =W = 0 fort < max(p, q), andZ is defined likeZ in step 2, withU; replaced
by Us. Then, compute a new estimate®f, 2u = 7 {_maxp.q)+1 UtV and regress by GLS
Ur + % — W onV;_; to obtain the following estimate of

)+

T

~
|

W12y Ve
t=max(p,q)+1

-1

;
[ ; VS U+ % -W | (5.9)
t=max(p,q)+1

The consistency and asymptotic normality of the above estimators are est@blighdour and
Pelletier (2013). In the previous steps, the orders of the AR and MAatmrsrare taken as known.
In practice, they are usually estimated by statistical methods or suggesteddny. tbufour and
Pelletier (2013) propose an information criterion to be applied in the se¢epa&the estimation
procedure. For alp; < P andg; < Q compute

(IogT)”‘S

“—. §>0. (5.10)

log[det( 3y )] + dim(y)

Choosep” and g as the set which minimizes the information criteria (5.10). The properties of
estimatorgyanddj are given in the paper.

6. FORECASTING

In this section, we study whether the introduction of VARMA factors can im@forecasting. We
consider a simplified version of the static model (4.7) - (4.9) wikere scalar:

Xi = AiR+ug, (6.1)
Ui = 5iuitfl+vit7 iu"‘7 N7 (62)
R = @oR_1+n—0n ;. (6.3)

On replacingr andu; in the observation equation (6.1) with the expressions in (6.2) - (6.3), tve ge
the following forecast equation fof; +1 based on the information available at tiffie

X 1rqm = OiXiT +Ai(@—di)Fr —Aibn+.
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Supposer; # 0, i.e. there is indeed a factor structure applicablex{o and @ # i, i.e. the
common and specific components do not have the same dynamics. With the addissumption
thatk follows an AR1) process, Boivin and Ng (2005) show that taking into account the f&gctor
allows one to obtain better forecastsXf [in terms of the mean squared error (MSE)]. We allow
here for an MA component in the dynamic proces$@fwhich provides a parsimonious way of
representing an infinite-order AR structure for the factor.

Forecast performance depends on the way factors are estimated as wedl choice of fore-
casting model. Boivin and Ng (2005) consider static and dynamic factor ditimalong with
three types of forecast equations: (hrestricted whereX; 1. is predicted usingir, Fr and their
lags; (2)direct, whereFy .y, is first predicted using its dynamic process, a forecast then used to
predictX; 1 with the factor equation (6.3); (3)onparametricwhere no parametric assumption is
made on factor dynamics and its relationship with observables. The simulati@mapirical results
of Boivin and Ng (2005) show that the unrestricted forecast equatitnstatic factors generally
yields the best performance in terms of MSE.

6.1. Forecasting models

A popular way to evaluate the predictive power of a model is to conduattaafesample forecasting
exercise. Here, we compare the FAVARMA approach with common faetsed methods. The
forecast equations are divided in two categories. First, we consideiodsethihere no explicit
dynamic factor model is used, such as diffusion-index (DI) and diffusistoregressive (DI-AR)
models [Stock and Watson (2002b)]:

m p
X1onr=a+ > Bi(jh)':ﬂj+1+ > pi(jh)X"T*j“‘
=1 =1

In this case, three variants are studied: (1) “unrestricted” (with 1 andp > 0); (2) “DI” (with
m=1 andp = 0); (3) “DI-AR” (with m= 1). Second, we consider two-step methods where com-
mon and specific components are first predicted from their estimated dynesoi&spes, and then
combined to forecast the variables of interest using the estimated obsermgtiation. Moreover,
we distinguish between sequential (or iterative) and direct methods tdatel¢orecasts [see Mar-
cellino, Stock and Watson (2006) for details]:

/
Xi1nT =AiFrinT FUiTnT

where u; t,n1 is obtained after fitting an ARY) process onui, while the factor forecasts
are obtained using “sequential~{ 1 = @T+h_1(L)FT+h,1|T] or “direct” methods Fr iyt =
P (L)Fr ]

In this exercise, the factors are defined as principal componets dfhus, only the second
type of forecast method is affected by allowing for VARMA factors. Wasider four identified
VARMA forms labeled: “Diag MA”, “Diag AR”, “Final MA” and “Final AR”. The FAVARMA

11



forecasting equations have the form:

X140t = AFrant +Uant s Front = @ren-a(L)Frin-gr +Orsn-a(L)N1 i a7 -

Our benchmark forecasting model is an AlRfodel, as in Stock and Watson (2002b) and
Boivin and Ng (2005). However, given the postulated factor structufmite-order autoregressive
model is only an approximation of the processX@gf From TheorenB.1, the marginal process
for each element oX; typically has an ARMA form. If the MA polynomial has roots close to the
non-invertibility region, a long autoregressive model may be needed tmxpyate the process.
For this reason, we also consider ARMA models as benchmarks, to setaépfare with respect
to AR and factor-based models.

6.2. Monte-Carlo simulations

To assess the performance of our approach, we performed a MoritesGaulation comparing
the forecasts of FAVARMA models (in four identified forms) with those of AR/models. The
data were simulated using a static factor model with (#factors and idiosyncratic components
similar to the ones considered by Boivin and Ng (2005) and Onatski {9009

Xip =AiR+ui, R=n—Bni_4,
uit :pNui—l,t+Eit7 Eit :pTEi7t_1+£it7 git ~ N(O71)7 I = 17"'7 N7 t= 17"'7T7

wheren, e N(0,1), py € {0.1,0.5,0.9} determines the cross-sectional dependepee; {0.1,0.9}
the time dependence, the number of factors iB 2; diag0.5, 0.3], N = {50,100, 130}, andT €
{50,100,600}. VARMA orders are estimated as in Dufour and Pelletier (2013), the ARrdut
idiosyncratic component is 1, and the lag order in VAR approximation of factgnamics is set to
6.

The results from this simulation exercise are presented in Appendix (Tabl€ht numbers
represent the MSE of four FAVARMA identified forms over the MSE of B&/direct forecasting
models. When the number of time periods is small£ 50), FAVARMA models strongly out-
perform FAVAR models, especially at long horizons. The huge improvémrehorizons 24 and
36 is due to the small sample size. When compared to the iterative FAVAR madekefrorted),
FAVARMA models still produce better forecasts in terms of MSE, but the imgmoent is smaller
relative to the multi-step-ahead VAR-based forecasts. When the numbereoperiods increases
(T =100, 600), the improvement of VARMA-based models is moderate, but the itteyield
better forecasts, especially at longer horizons. Another observdtiomecest is that FAVARMA
models perform better when the factor structure is weakjn cases where the cross-section size
is relatively small N = 50 compared ttN = 100) and idiosyncratic components are correlated.

We performed additional simulation exercises (not reported), which aiswdstrate a better
performance of FAVARMA-based forecasts when the number of fadgtmreases. The description
and results are available in the appendix.
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7. APPLICATION: FORECASTING U.S. MACROECONOMIC
AGGREGATES

In this section, we present an out-of-sample forecasting exercise asiatanced monthly panel
from Boivin et al. (2009) which contains 128 monthly U.S. economic andirg indicators ob-
served from 1959M01 to 2008M12. The series were initially transforméutiace stationarity.

The MSE results relative to benchmark AR} models are presented in Table 1. The out-of-
sample evaluation period is 1988M01-2008M12. In the forecasting modetgstricted”, “DI”,
and “DI-AR”, the number of factors, the number of lags for both factordX;; are estimated with
BIC, and are allowed to vary over the whole evaluation period. For &tricted” model the number
of factors is 3m= 1 andp = 0. In the case of “DI-AR” and “DI", 6 factors are used, plus 5 lags of
Xir within “DI-AR” representation.

In the FAVAR and FAVARMA models, the number of factors is set to 4. Foregllluation
periods and forecasting horizons the estimated VARMA orders (AR andddpectively) are low:
1 and[1,1,1,1) for DMA form, [1,2,1,1] and 1 for DAR, 1 and 2 for FMA, an{2 — 4] and 1 for
FAR form. The estimated VAR order is most of the time equal to 2, while the lag afdeach
idiosyncratic AR@) process is between 1 and 3. In robustness analysis, the VAR orsidrekea
setto 4, 6 and 12, but the results did not change substantially. BothriatévARMA orders are
estimated to 1, while the number of lags in the benchmark AR model fluctuatesameivaand 2.

The results in Table 1 show that VARMA factors improve the forecasts phkecroeconomic
indicators across several horizons. For industrial production grdivehdiffusion-index model ex-
hibits the best performance at the one-month horizon, while diagonal MAired MA FAVARMA
models outperform the other methods for horizons of 2, 4 and 6 monthdlyf-imavariate ARMA
models yield the smallest RMSE for the long-term forecasts. When foregastiployment growth,
three FAVARMA forms outperform all other factor-based models forshond mid-term horizons.
ARMA models still produce the smallest RMSE for most of the long-term hoszon

For CPI inflation, the DI model provides the smallest MSE at horizon 1, whéefittal AR
FAVARMA models do a better job at horizons 2, 4 and 6. Several VARM&dn models perform
the best for longer horizons (18, 24 and 48 months), while sequendddbapproaches dominate
in forecasting 12 and 36 months ahead.

From Theorenf.], it is easy to see that each componeniXpfollows a univariate ARMA
process. The forecasts based on factor and univariate ARMA mogelsoain general equiva-
lent, because different information sets are used. Even though multévar@dels (such as factor
models) use more variables, univariate ARMA models tend to be more parsusanigractice,
which may reduce estimation uncertainty. So these two modelling strategies auc@rquite
different forecasts. In Table 2 we present MSE of all factor modedligtions relative to ARMA
forecasts. Boldface numbers highlight cases where the ARMA modetidatms the factor-based
alternatives in terms of MSE.

For industrial production, ARMA specifications do better than all diffusimtex and FAVAR
models (except at the one-month horizon). For employment, the conclugjaitéssimilar relative
to FAVARMA, while diffusion-index models perform better than ARMA at tmans 1, 2, 4, and
48. Finally, in the case of CPI inflation, ARMA model seem to be a better cHoicenost of
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Table 1: RMSE relative to direct AR) forecasts

Industrial production growth rate: total
Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaR FinalMA FinalAR ARMA

1 0.8706 0.8457 0.8958 0.9443 0.9443 0.8971 0.9019 0.9132 0.8985 0.9[700
2 1.0490 0.9938 1.0106 1.0157 1.0665 0.9074 0.9202 0.9112 0.9123 1.0026

4 1.1934 1.0411 1.0527 1.0711 1.2214 0.8947 0.9906 0.8970 0.9481 0.9710

6 1.1496 1.0238 1.0245 1.1743 1.3528 0.9248 1.0494 0.9202 0.9847 0.9918

12 1.2486 1.0445 1.0389 1.0933 1.3682 1.0008 1.2215 1.0075 .0371  0.9713

18 1.0507 1.0048 1.0207 1.0662 1.2508 1.0511 1.5098 1.0615 .120@  0.9910

24 1.0393 1.0628 1.0748 1.0128 1.0863 0.9858 1.7920 0.9959 .1061  0.9604

36 1.0092 1.0906 1.1437 1.2364 1.0421 0.9855 3.0304 0.9883 .1793  0.9826

48 1.0147 11110 1.1212 1.1063 1.0355 0.9921 5.5321 0.9922 1681  0.9856

Civilian labor force growth rate: employed. total
Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaiR FinalMA Final AR ARMA

1 0.8264 0.8832 0.8451 0.8202 0.8202 0.8004 0.8075 0.8027 0.8008 1.0496
2 0.9407 0.9391 0.9381 0.9477 0.9591 0.8931 0.8805 0.8961 0.8852 1.0422
4 0.9766 0.9739 0.9937 1.0204 1.0551 0.9213 0.8997 0.92000.8991  0.9993

6 1.0776 1.0799 1.0937 1.0714 1.1550 0.9667 0.9526 0.96360.9455  1.0032
12 1.0741 1.0742 1.0722 1.0137 1.1654 0.9718 0.9912 0.9704 .9558  0.9507
18 1.0471 1.0488 1.0472 0.9735 1.1391 1.0073 1.1386 1.0096 .0391  0.9721
24 1.0237 1.0580 1.0268 0.9641 1.1002 1.0154 1.2806 1.0177 1.0856 0.9893
36 0.9573 0.9099 0.9703 0.9507 0.9477 0.9070 1.5452 0.9043 .0098  0.8957
48 0.9227 0.9236 0.9250 0.9576 0.9989 0.9652 2.4022 0.9624 1.0482 550.9

Consumer price index growth rate: all items
Horizon  Unrestricted DI DIAR Direct Sequential Diag MA DiaiR FinalMA Final AR ARMA

1 0.8806 0.8700 0.8700 0.9228 0.9228 0.9144 0.9432 0.8856 0.9072 1.0143
2 0.9866 0.9942 0.9942 0.9612 0.9730 0.9309 0.9427 0.92740.9170  0.9856

4 1.0656 1.0732 1.0732 1.0398 1.0170 1.0007 1.0665 0.98950.9792  1.0129

6 1.1343 11334 1.1334 1.0349 1.0101 0.9946 1.0752 0.99390.9928  1.0364

12 1.1173 1.1279 1.1279 1.0821 0.9513 0.9572 1.1958 0.9553 1.0408 1.0297
18 1.0311 1.0379 1.0379 1.0430 0.9654 0.8894 1.1021 0.8909 0.9673 0.9391
24 0.9644 1.0712 1.0712 0.9510 0.9980 0.8819 1.18510.8791 0.9713 0.8805
36 0.7645 0.7627 0.7627 0.9870 0.9470 0.8329 1.4591 0.8385 0.9126 0.8619
48 0.8663 0.8488 0.8488 0.9361 0.9536 0.8292 2.2640 0.8335 0.8864 0.8511

Note — The numbers in bold character present the model producingshéobecasts in terms of MSE.

the horizons relatively to diffusion-index and FAVAR alternatives. Ondtreer hand, FAVARMA
models do much bettee,g.the final MA form beats the ARMA models at all horizons.

Based on these results, ARMA models appears to be a very good altertwesgitandard factor-
based models at long horizons. This is not surprising since ARMA modelgeay parsimonious.
However, FAVARMA models outperform ARMA models in most cases.

It is also of interest to see more directly how FAVARMA forecasts comparthése from
FAVAR models. In Table 3, we present MSE of FAVARMA forecasting modelstive to Di-
rect and Sequential FAVAR specifications. The numbers in bold chanaesent cases where the
FAVARMA model performs better than the FAVAR.

Most numbers in Table 3 are boldfaced,. FAVARMA models outperform standard FAVAR
specifications at most horizons. This is especially the case for industo@dlgtion, where both
MA VARMA forms produce smaller MSE at all horizons. At best, the FAVARNhodel improves
the forecasting accuracy by 32% at horizon 12. In the case of Civillzor farce, VARMA factors
do improve the predicting power, but the Direct FAVAR model performs béttdonger horizons.
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Table 2: RMSE relative to ARMAp, q) forecasts

Industrial production growth rate: total

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA Di&R FinalMA  Final AR
1 0.8975 0.8719 0.9235 0.9735 0.9735 0.9248 0.9298 0.9414 9268.
2 1.0463 0.9912 1.0080 1.0131 1.0637  0.9050 0.9178 0.9088 0.9099
4 1.2290 1.0722 1.0841 1.1031 1.2579 0.9214 1.0202 0.9238 0.9764
6 1.1591 1.0323 1.0330 1.1840 1.3640 0.9324 1.0581 0.9278 0.9928
12 1.2855 1.0754 1.0696 1.1256 1.4086 1.0304 1.2576 1.0373 671.0
18 1.0602 1.0139 1.0300 1.0759 1.2622 1.0606 1.5235 1.0711 308.1
24 1.0822 1.1066 1.1191 1.0546 1.1311 1.0264 1.8659 1.0370 5171.1
36 1.0271 1.1099 1.1640 1.2583 1.0606 1.0030 3.0841 1.0058 004.2
48 1.0295 1.1272 1.1376 1.1225 1.0506 1.0066 5.6129 1.0067 852.1

Civilian labor force growth rate: employed. total

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaRR FinalMA Final AR
1 0.7873 0.8415 0.8052 0.7814 0.7814 0.7626 0.7693 0.7648 7630.
2 0.9026 0.9011 0.9001 0.9093 0.9203 0.8569 0.8448 0.8598 8494.
4 0.9773 0.9746 0.9944 1.0211 1.0558 0.9219 0.9003 0.9206 0.8997|
6 1.0742 1.0765 1.0902 1.0680 1.1513 0.9636 0.9496 0.9605 0.9425
12 1.1298 1.1299 1.1278 1.0663 1.2258 1.0222 1.0426 1.0207 054.0
18 1.0772 1.0789 1.0773 1.0014 1.1718 1.0362 1.1713 1.0386 689.0
24 1.0348 1.0694 1.0379 0.9745 1.1121 1.0264 1.2945 1.0287 1.0973
36 1.0688 1.0159 1.0833 1.0614 1.0581 1.0126 1.7251 1.0096 274.1
48 0.9662 0.9671 0.9686 1.0027 1.0460 1.0107 2.5154 1.0077 1.0976

Consumer price index growth rate: all items

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA Di&R Final MA  Final AR
1 0.8682 0.8577 0.8577 0.9098 0.9098 0.9015 0.9299 0.8731 8944.
2 1.0010 1.0087 1.0087 0.9752 0.9872 0.9445 0.9565 0.9409 0.9304
4 1.0520 1.0595 1.0595 1.0266 1.0040 0.9880 1.0529 0.9769 0.9667
6 1.0945 1.0936 1.0936 0.9986 0.9746 0.9597 1.0374 0.9590 0.9579
12 1.0851 1.0954 1.0954 1.0509 0.9239 0.9296  1.1613 0.9277 1.0108
18 1.0980 1.1052 1.1052 1.1106 1.0280 0.9471 1.1736 0.9487 1.0300
24 1.0953 1.2166 1.2166 1.0801 1.1334 1.0016 1.3459 0.9984 1.1031
36 0.8870 0.8849 0.8849 1.1451 1.0987 0.9664 1.6929 0.9729 1.0588
48 1.0179 0.9973 0.9973 1.0999 1.1204 0.9743 2.6601 0.9793 1.0415

Note — The numbers in bold character present cases where the ARMA matperforms the factor-based alternatives in
terms of MSE.

Finally, both diagonal and final MA FAVARMA specifications provide smaMSEs over all hori-
zons in predicting CPl inflation. The improvement increases with the farboagons, and reaches

a maximum of 15%.
We performed a similar exercise with a Canadian data set from Boivin, Gigand Stevanogi

(2009b). We found that VARMA factors help in predicting several ken&lian macroeconomic
aggregates, relative to standard factor models, and at many foreclastingns. The description

and results are available in the Appendix.
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Table 3: MSE of FAVARMA relative to FAVAR forecasting models

Industrial production growth rate: total
VARMA/Direct VARMA/Sequential
Horizon | Diag MA Diag AR FinalMA  Final AR | Diag MA Diag AR Final MA  Final AR
1 0.9500 0.9551 0.9671 0.9515 0.9500 0.9551 0.9671 0.9515
2 0.8934 0.9060 0.8971 0.8982 0.8508 0.8628 0.8544 0.8554
4 0.8353 0.9248 0.8375 0.8852 0.7325 0.8110 0.7344 0.7762
6 0.7875 0.8936 0.7836 0.8385 0.6836 0.7757 0.6802 0.7279
12 0.9154 1.1173 0.9215 0.9486 0.7315 0.8928 0.7364 0.7580
18 0.9858 1.4161 0.9956 1.0510 0.8403 1.2071 0.8487 0.8959
24 0.9733 1.7694 0.9833 1.0921 0.9075 1.6496 0.9168 1.0182
36 0.7971 2.4510 0.7993 0.9540 0.9457 2.9080 0.9484 1.1318
48 0.8968 5.0005 0.8969 1.0559 0.9581 5.3424 0.9582 1.1281
Civilian labor force growth rate: employed. total
VARMA/Direct VARMA/Sequential
Horizon | Diag MA Diag AR FinalMA  Final AR | Diag MA Diag AR Final MA  Final AR
1 0.9759 0.9845 0.9787 0.9763 0.9759 0.9845 0.9787 0.9763
2 0.9424 0.9291 0.9456 0.9341 0.9312 0.9180 0.9343 0.9229
4 0.9029 0.8817 0.9016 0.8811 0.8732 0.8527 0.8720 0.8521
6 0.9023 0.8891 0.8994 0.8825 0.8370 0.8248 0.8343 0.8186
12 0.9587 0.9778 0.9573 0.9429 0.8339 0.8505 0.8327 0.8201
18 1.0347 1.1696 1.0371 1.0674| 0.8843 0.9996 0.8863 0.9122
24 1.0532 1.3283 1.0556 1.1260, 0.9229 1.1640 0.9250 0.9867
36 0.9540 1.6253 0.9512 1.0622 0.9571 1.6305 0.9542 1.0655
48 1.0079 2.5086 1.0050 1.0946 0.9663 2.4048 0.9635 1.0494
Consumer price index growth rate: all items
VARMA/Direct VARMA/Sequential
Horizon | Diag MA Diag AR Final MA  Final AR | Diag MA Diag AR Final MA  Final AR
1 0.9909 1.0221 0.9597 0.9831 0.9909 1.0221 0.9597 0.9831
2 0.9685 0.9808 0.9648  0.9540 0.9567 0.9689 0.9531 0.9424
4 0.9624 1.0257 0.9516 0.9417 0.9840 1.0487 0.9730 0.9628
6 0.9611 1.0389 0.9604 0.9593 0.9847 1.0644 0.9840 0.9829
12 0.8846 1.1051 0.8828 0.9618 1.0062 1.2570 1.0042 1.0941
18 0.8527 1.0567 0.8542 0.9274 0.9213 1.1416 0.9228 1.0020
24 0.9273 1.2462 0.9244 1.0213 0.8837 1.1875 0.8809 0.9732
36 0.8439 1.4783 0.8495 0.9246 0.8795 1.5408 0.8854 0.9637
48 0.8858 2.4185 0.8904 0.9469 0.8695 2.3742 0.8741 0.9295

Note — The numbers in bold character present cases where the FA¥ARddlel performs better than the FAVAR.

8. APPLICATION: EFFECTS OF MONETARY POLICY SHOCKS

In the recent empirical macroeconomic literature, structural factor dadlgs become popular: us-
ing hundreds of observable economic indicators appears to overcopralsdifficulties associated
with standard structural VAR modelling. In particular, bringing more informmgtighile keeping the
model parsimonious, may provide corrections for omitted and measuremert; esee Bernanke
et al. (2005) and Forni, Giannone, Lippi and Reichlin (2009).

We reconsider the empirical study of Bernanke et al. (2005) with the satagtie same method
to extract factors (principal components) and the same observed {&eieral Funds Rate). So
we setD(L) = 0 andG = | in equations (4.8)-(4.9). The difference is that we estimate VARMA
dynamics on static factors instead of imposing a finite-order VAR reprdsmntalhe monetary
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policy shock is identified from the Cholesky decomposition of the residuar@nce matrix in
(4.9), where the observed factor is ordered last. We consider allideatified VARMA forms,

but retain only the diagonal MA representation. The number of latentriacdcset to five, and
we estimate a VARMA (2.1) model [these orders were estimated using the irtfomaaiterion in

Dufour and Pelletier (2013)].

In Figure 1, we present FAVARM{, 1)-based impulse responses, with 90% confidence inter-
vals (computed from 5000 bootstrap replications). A contractionary mgnptdicy shock gen-
erates a significant and very persistent economic downturn. The eonédntervals are more
informative than those from FAVAR models. We conclude that impulse resggofrom a parsi-
monious 6-factor FAVARMA(2, 1) model provide a precise and plausiieupe of the effect and
transmission of monetary policy in the U.S.

In Figure 2, we compare the impulse responses to a monetary policy shiolatesl from
FAVAR and FAVARMA-DMA models. The FAVAR impulse coefficients weremnputed for several
VAR orders. To get similar responses from a standard FAVAR model, teaka information
criterion leads to a lag order of 14. So we need to estimate 84 coefficiergsnijuy the factors
dynamics in the FAVARMA framework, while the FAVAR model requires 510R/parameters.

The approximation of the true factor process could be important whersitfgpthe parametric
bootstrap procedure to obtain statistical inference on objects of intefestohfidence intervals are
produced as follows [see Yamamoto (2011) for theoretical justification®bthotstrap procedure].
Step 1 Shuffle the time periods, with replacement, of the residuals in (4.9) to get thistiap
samplef];. Then, resample static factors using estimated VARMA coefficients:

R=®L)R 1+067,.

Step 2 Shuffle the time periods, with replacement, of the residuals in (4.7) to get thistiap
sampleu;. Then resample the observable series ubjrand the estimated loadings:

% = AR+ 0.

Step 3Estimate FAVARMA model orX;, identify structural shocks and produce impulse responses.

9. CONCLUSION

In this paper, we have studied the relationship between VARMA and faepresentations of a
vector stochastic process and proposed the FAVARMA model. We staytetiderving that mul-
tivariate time series and their associated factors cannot in general lloth &ofinite-order VAR
process. When the factors are obtained as linear combinations of ableeseries, the dynamic
process of the latter has a VARMA structure, not a finite-order VAR fotmaddition, even if
the factors follow a finite-order VAR process, this implies a VARMA reprgaton for the observ-
able series. As aresult, we proposed the FAVARMA framework, whichidones two parsimonious
methods to represent the dynamic interactions between a large number ofriesefeetor analysis
and VARMA modeling.

To illustrate the performance of the proposed approach, we performeteNCarlo simulations
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and found that VARMA modelling is quite helpful, especially in small samplesscasghere the
best improvement occurred at long horizons — but also in cases wigesarniple size is comparable
to the one in our empirical data.

We applied our approach in an out-of-sample forecasting exercises! lwas a large U.S.
monthly panel. The results show that VARMA factors help predict sevawalmacroeconomic
aggregates relative to standard factor models. In particular, FAVARMAetsogenerally outper-
form FAVAR forecasting models, especially if we use MA VARMA-factoesfications.

Finally, we estimated the effect of monetary policy using the data and the idatitific
scheme of Bernanke et al. (2005). We found that impulse respomsasafparsimonious 6-factor
FAVARMA (2.1) factor model yields a precise and plausible picture of tfiecéfind the transmis-
sion of monetary policy in the U.S. To get similar responses from a stand&&RFmodel, the
Akaike information criterion leads to a lag order of 14. So we need to estimateddficients gov-
erning the factors dynamics in the FAVARMA framework, while the FAVAR miogguires 510
parameters
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APPENDIX

A. PROOFS
Proof of Theorem 3.1  SinceA has full rank, we can multiply (3.1) byA’A) XA’ to get
Ro1= (AA) A% 1 — (AA) A ug. (A.1)
If we now substitutds_; in (3.3), we see that
R=®L)AA) A% 11— OL)ANA) N +a,
hence, on substituting the latter expressiorFdn (3.1), and definingh (L) = A @ (L)(A'A) A7,

X =AR+u=A(L)X_1+u—A(L)_1+ANAa =Ag(L)X—1+AL)w+ANa =A(L)X-1+B(L)&

whereA(L) = — A (L)L ande = [ :&]’. This yields the representation (3.5).

We will now show thatX; can can be written as a VARMA process where the noise is the in-
novation process oX;. SinceX; is regular strictly indeterministic weakly stationary process, it
has a moving-average representation of the form (2.1) whereX; — R [X | X -1, X —2,...] and

R [X | % -1, X —2,...] is the best linear forecast o based on its own pasg. =E[&&{] and
defX¢] > 0. Using the assumptions (3.2) and (3.4), it is easy to see that

E[Xju] = E[X ;&) = E[we]_;] = E[ag]_j] =0for j > 1. (A.2)
Then .
ALX =AL)¥(L)e = ¥(L)er = Z)Wj Et- | (A.3)
wherel.UJ Z A.lIJJ i andYs = 0fors< 0,s= j—i. Let us now multiplyA(L)X by &, and take

the expected value using (A.3) and (3.5), we get

E[A(L)XE W] = Z)(’UJ Elecj& 1] =Bj 2 (A.4)
J:
= E[(A(L)w+Aa)e_]=0fork> p+1, (A.5)
hencel.t_/j =0fork> p+1, so thatX; has the following VARMAp+ 1, p+ 1) representation:

AL)X =¥(L)& (A.6)

— prl_
whereW(L) = 5 L.
j=o0
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Proof of Theorem 3.2 To obtain the representations Xf, we follow the same steps as in the
previous proof except we substitute (A.1) fer 1 in (3.7), which yields

X =ADL)AN)NX 1+ —ADL)ANA) N U 1+A0(L)a.

Defining A(L) and g as above, wittB(L) = [A(L):AO(L)], gives the representation as in (3.5).
Then, remark that (A.5) becomes

E[(A(L)u +AO(L)a)g_,] =0fork >max(p+1,q), (A7)
soX has a VARMA(p+ 1, max(p+1, q)).

Proof of Theorem 3.3 R =CX, whereC is aK x N full row rank matrix. Properties (i) and (ii)
are easily proved using Litkepohl (2005, Corollaries 11.1.1 and 11Ho2)iii), if X has an MA
representation as in (2.1) or (2.4), the result is obtained using LUtk€p@8i, Propositions 4.1 and
4.2).
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B. SIMULATION RESULTS: FAVARMA AND FAVAR FORE-
CASTS

Table 1 contains the results of the Monte Carlo simulation exercise presersedtion 6.2. The
numbers represent the MSE of four FAVARMA identified forms over theBM# FAVAR direct
forecasting models.

Table 1: Comparison between FAVARMA and FAVAR forecasts: koGarlo simulations

pr =0.9,py =05

T =50N=50 T =50,N =100
Horizon | Diag MA Diag AR Final MA  Final AR | Diag MA Diag AR Final MA  Final AR

1 1.0078 1.1405 0.9235 1.3858 1.0061 1.0945 0.9084 1.4722
2 1.0199 1.0852 0.9483 1.3189 1.0302 1.0762 0.9383 1.3660
4 0.8872 0.9459 0.8350 1.0746 0.9338 1.0242 0.8745 1.1542
6 0.8122 0.9181 0.7635 0.9536 0.8514 0.9375 0.7954 1.0010
12 0.6311 0.8392 0.6072 0.7198 0.6857 0.9278 0.6533 0.8036
18 0.4913 0.7186 0.4754 0.5339 0.5181 0.8285 0.4955 0.5744
24 0.3762 0.6192 0.3706 0.4237 0.3846 0.7215 0.3788 0.4291
36 0.1394 0.2429 0.1369 0.1480 0.1445 0.3006 0.1422 0.1560

T =100,N =50 T =600,N =130
1 1.0761 1.1170 1.0004 1.6656 1.0130 1.0126 1.0093 1.0070
2 1.0865 1.1495 1.0193 15676 0.9962 0.9956 0.9952 0.9951]
4 1.0537 1.0890 1.0038 1.4432) 0.9945 0.9950 0.9947 0.9947
6 1.0168 1.0392 0.9686 1.3060| 0.9945 0.9954 0.9946 0.9946
12 0.9183 0.9915 0.8960 1.2573 0.9871 0.9883 0.9873 0.9873
18 0.8886 0.9848 0.8552 1.1123 0.9831 0.9880 0.9832 0.9832
24 0.8643 0.9706 0.8198 1.1203 0.9831 0.9830 0.9828 0.9828
36 0.8078 0.9754 0.7956 1.0742 0.9863 0.9846 0.9847 0.9847|

pr =0.9,0y=01

T=50,N=50 T =50,N =100
Horizon | Diag MA Diag AR Final MA  Final AR | Diag MA Diag AR Final MA  Final AR

1 1.0203 1.0656 0.8897 1.2688 0.9977 1.0303 0.9026 1.3464|
2 0.9689 1.0113 0.8982 1.1708 1.0013 1.0406 0.9038 1.1735
4 0.9142 0.9508 0.8616 1.0391] 0.9032 0.9166 0.8461 1.0029
6 0.8420 0.8656 0.7851 0.9213 0.8841 0.8798 0.8054 0.9182
12 0.6401 0.7487 0.6235 0.7038 0.7042 0.8089 0.6850 0.7582
18 0.5208 0.6774 0.5133 0.5609 0.5469 0.6970 0.5296 0.5742
24 0.4095 0.5979 0.4124 0.4322] 0.4380 0.5724 0.4282 0.4499
36 0.1417 0.2169 0.1402 0.1447, 0.1453 0.2152 0.1424 0.1535

T =100,N =50 T =600,N =130
1 1.0622 1.0751 0.9990 1.3846 0.9978 0.9980 0.9984 0.9927,
2 1.0578 1.0368 0.9913 1.2818 0.9935 0.9951 0.9935 0.9933
4 1.0254 1.0088 0.9729 1.2141f 0.9890 0.9894 0.9891 0.9891
6 1.0058 0.9720 0.9477 1.1812 0.9892 0.9892 0.9892 0.9892
12 0.9480 0.9163 0.8819 1.0303 0.9919 0.9918 0.9919 0.9919
18 0.9371 0.9068 0.8823 1.0173 0.9784 0.9784 0.9784 0.9784
24 0.9441 0.8755 0.8626 1.0214f 0.9807 0.9807 0.9807 0.9807|
36 0.8591 0.8376 0.8013 0.9264 0.9796 0.9796 0.9796 0.9796
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Table B.1: Monte Carlo simulation results (continued)

pr =0.1,py=09
T=50,N=50 T =50,N =100
Horizon | Diag MA Diag AR Final MA  Final AR | Diag MA Diag AR Final MA  Final AR

1 0.8978 0.9108 0.8924 0.9362 0.9329 0.8880 0.8585 0.9208
2 0.8522 0.8716 0.8606 0.9168 0.8289 0.8194 0.8228 0.8642
4 0.8381 0.8420 0.8524 0.8601] 0.8195 0.8213 0.8187 0.8238
6 0.8213 0.8227 0.8225 0.8210 0.7852 0.7806 0.7799 0.7795
12 0.7923 0.7906 0.7905 0.7907] 0.7630 0.7569 0.7567 0.7568
18 0.6803 0.6770 0.6771 0.6772 0.6582 0.6576 0.6577 0.6577|
24 0.5367 0.5363 0.5364 0.5364| 0.4865 0.4864 0.4863 0.4862
36 0.0946 0.0956 0.0944 0.0944 0.0801 0.0799 0.0799 0.0800

T =100,N =50 T =600,N =130
1 0.9680 0.9676 0.9560 0.9515 0.9931 0.9995 0.9926 0.9921)
2 0.9332 0.9304 0.9306 0.9310 0.9881 0.9929 0.9882 0.9878
4 0.9338 0.9261 0.9257 0.9257 0.9882 0.9895 0.9893 0.9894
6 0.9467 0.9350 0.9351 0.9351] 0.9831 0.9831 0.9830 0.9830
12 0.9358 0.9359 0.9359 0.9359 0.9825 0.9825 0.9825 0.9825
18 0.9297 0.9298 0.9297 0.9297] 0.9874 0.9873 0.9873 0.9873
24 0.9140 0.9142 0.9143 0.9143 0.9887 0.9886 0.9886 0.9886
36 0.9044 0.9047 0.9043 0.9043 0.9929 0.9930 0.9930 0.9930

pr=01py=01
T =50,N=50 T =50,N=100
Horizon | Diag MA Diag AR Final MA  Final AR | Diag MA Diag AR Final MA  Final AR

1 0.9439 0.8761 0.7969 0.9618 0.9289 0.8919 0.8155 0.9675
2 0.8029 0.7863 0.7764 0.8459 0.7888 0.7900 0.7736 0.8569
4 0.7894 0.7542 0.7533 0.7742 0.7513 0.7533 0.7525 0.7687|
6 0.7580 0.7420 0.7409 0.7438 0.7477 0.7488 0.7446 0.7458
12 0.6773 0.6751 0.6751 0.6754| 0.6575 0.6604 0.6560 0.6613
18 0.5757 0.5700 0.5701 0.5761] 0.5741 0.5753 0.5704 0.5728
24 0.4106 0.4074 0.4073 0.4084| 0.4329 0.4303 0.4304 0.4317|
36 0.0726 0.0721 0.0721 0.0721] 0.0719 0.0722 0.0721 0.0721

T =100,N =50 T =600,N =130
1 0.9702 0.9672 0.9290 0.9316 0.9838 0.9874 0.9868 0.9840
2 0.8998 0.9053 0.8985 0.8993 0.9816 0.9904 0.9811 0.9811
4 0.9095 0.9003 0.9000 0.8997 0.9891 0.9894 0.9891 0.9891
6 0.8806 0.8771 0.8767 0.8767] 0.9821 0.9822 0.9821 0.9821)
12 0.8855 0.8841 0.8839 0.8839 0.9778 0.9778 0.9778 0.9778
18 0.8725 0.8704 0.8702 0.8702 0.9852 0.9852 0.9852 0.9852
24 0.8711 0.8707 0.8709 0.8709 0.9815 0.9815 0.9815 0.9815
36 0.8183 0.8185 0.8183 0.8183 0.9790 0.9790 0.9790 0.9790
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C. SIMULATION RESULTS: DIFFERENT FACTOR NUMBERS

The simulation exercise in this section studies how FAVARMA-based fotebase a performance
when the number of factors increases. shows that FAVARMA-baseddsts have a performance
when the number of factors increases. The simulation design is descrifadidwing:

 time dimensionT = 100;

 cross-section dimensioiN = 100;

number of factorsK € {3,4,6};

idiosyncratic component dynamiog; = K Vi, Vit ~ N(O, a%i) such that the common compo-
nent explains a fractiof of the variance ok;; following Boivin and Ng (2005)3 is set to
0.5 while for the first series in pan¥, the one that is forecasted: VagR ) /var(Xy;) = 0.75;

* MA coefficients matrices:

02350 0 0
B=| 0 02317 O©
0 0 05776
—K=4
03365 0 0 0
s_| 0 02420 0 0
0 0 00610 O
0 0 0 04735
—K=6 )
01558 0 0 0 0 0
0 04827 O 0 0 0
s_| O 0 04525 O 0 0
0 0 0 05320 O 0
0 0 0 0 06604 O
0 0 0 0 0 02763 |

* VAR order: 4;
* VARMA orders: estimated as in Dufour and Pelletier (2013);

» AR order for idiosyncratic component: 1.

The results are presented in Table 2 and demonstrate that FAVARMA! haiseasts have a
better performance as the number of factors increases.
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Table 2: Comparison between FAVARMA and FAVAR forecasts for ddfgrfactor numbers
Monte Carlo simulations

RELATIVE MSE TO FAVAR(4) DIRECT MODEL

K=3 K=4 K=6
Horizon | Diag MA Diag AR Final MA Final AR | Diag MA Diag AR Final MA Final AR | Diag MA Diag AR Final MA Final AR
1 0.9638 0.9643 0.9285 0.9330 0.9194 0.9182 0.8866 0.8927 0.7282 0.6615 0.6905 0.6907
2 0.9085 0.9174 0.9076 0.9133 0.8792 0.8901 0.8805 0.8866 0.8261 0.8615 0.8244 0.8384
4 0.8971 0.8966 0.8965 0.8961 0.8764 0.8775 0.8764 0.8769 0.8030 0.8030 0.8010 0.8072
6 0.9038 0.9037 0.9035 0.903§ 0.8548 0.8549 0.8548 0.8549 0.9182 0.9180 0.9182 0.9204
12 0.8808 0.8807 0.8807 0.8807 0.8416 0.8418 0.8418 0.8418 0.7983 0.7997 0.7983 0.7983
18 0.8831 0.8831 0.8831 0.8831 0.8455 0.8454 0.8454 0.8454 0.9393 0.9383 0.9393 0.9393
24 0.8757 0.8756 0.8756 0.8756 0.8425 0.8425 0.8425 0.8425 0.7287 0.7286 0.7287 0.7287
36 0.8344 0.8343 0.8343 0.8343 0.7930 0.7932 0.7932 0.7932 0.5466 0.5466 0.5466 0.5464
RELATIVE MSE TO FAVAR(4) ITERATIVE MODEL
K=3 K=4 K=6
Horizon | Diag MA Diag AR Final MA Final AR | Diag MA Diag AR Final MA Final AR | Diag MA Diag AR Final MA Final AR
1 0.9638 0.9643 0.9285 0.9330 0.9194 0.9182 0.8866 0.8927 0.7282 0.6615 0.6905 0.6907
2 0.9197 0.9288 0.9188 0.9246 0.9092 0.9205 0.9106 0.9168 0.9296 0.9695 0.9277 0.9434
4 0.9685 0.9680 0.9679 0.9675 0.9562 0.9574 0.9562 0.9568 0.9406 0.9406 0.9383 0.9454
6 0.9927 0.9926 0.9925 0.9926 0.9851 0.9852 0.9850 0.9852 0.9467 0.9466 0.9467 0.949(¢
12 1.0001 1.0000 1.0000 1.0003 1.0002 1.0005 1.0005 1.0005 0.9803 0.9820 0.9803 0.9802
18 0.9997 0.9996 0.9996 0.9996 1.0038 1.0037 1.0037 1.0037 0.9957 0.9947 0.9957 0.9957
24 1.0009 1.0008 1.0008 1.0008 1.0010 1.0009 1.0009 1.0009 0.9978 0.9977 0.9978 0.9978
36 0.9998 0.9997 0.9997 0.9997 0.9993 0.9995 0.9995 0.9995 0.9986 0.9986 0.9986 0.9984




D. FORECASTING MACROECONOMIC AGGREGATES IN A
SMALL OPEN ECONOMY: CANADA

Using the Canadian balanced monthly panel of Boivin et al. (2009b), evfomned an out-of-
sample forecasting exercise similar to the one described above for U.STd&gpanel comprises
332 time series from 1981 to 2008. The evaluation period is 1998-2008.eAdisswere initially
transformed to induce stationarity. For this panel, the time and cross-settiensions are close.
The number of factors and lag orders across the forecasting moddlseasame as for the U.S.
data.

The results in Table 3 are quite similar to the U.S. ones: FAVARMA models impra/éotie-
casts of key macroeconomic indicators across several horizonstticuper, VARMA factors pro-
duce the best forecasts of employment at all horizons (except fdr8la&nd 24 months). For CPI
inflation, the Diffusion index model has the best performance at shordns of 1 and 2 months,
at the 18-month horizon, and for long horizons of 3 and 4 years. FAYARnodels in Final MA
form outperform other approaches at 4, 6, 12 and 24 month horizBmally, ARMA models
yield the smallest RMSE for PPI inflation at short horizons (1, 2, 4 and &mspnwvhile Diagonal
MA and Final AR FAVARMA models have the best performance at horizufri2 and 36 months
respectively.

In Table 4, we present the MSE of all factor model predictions relativeRMA forecasts.
Boldface numbers highlight cases where the ARMA model outperformsaitterfbased model
in terms of MSE. For the employment growth rate, the ARMA model outperfoliiibrae one-
step models, except at the 2-month horizon. On the other hand, threeR¥Aorms and the
Sequential FAVAR model do better than ARMA models for all horizons. Wimeacasting CPI
inflation, the two FAVARMA MA forms appear preferable to ARMA models atadtizons. Finally,
for PPI inflation, ARMA models exhibit the best performance at shorizbos.

It is also of interest to see how FAVARMA forecasts fare in comparison thitise of FAVAR
models. In Table 5, we present MSE of FAVARMA forecasting models radat direct and se-
guential FAVAR approaches. Numbers in bold character indicate casa®whe FAVARMA spec-
ification performs better than the FAVAR one. The FAVARMA models dominate istroases,
especially the two MA FAVARMA specifications.
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Table 3: RMSE relative to direct AP) forecasts — Canadian data

Employment growth rate

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaiR FinalMA Final AR ARMA
1 1.0221 1.0165 1.0920 0.9854 0.9854 0.9410 0.9854 0.9601 1.0362 1.0151
2 0.9874 0.9751 0.9457 0.9998 0.9920 0.9059 0.9920 0.9236 1.0597 1.0092
4 1.0604 1.0865 1.1204 0.9783 0.9399 0.9298 0.9399 0.9221 1.0503 1.0060
6 1.1928 1.1408 1.1667 1.1130 0.9760 0.9641 0.9760 0.9286 1.0615 1.0011
12 0.9822 1.1197 1.2073 1.0402 0.9914 1.0194 0.9914 0.9938 1.0889 760Q.¢
18 1.2135 15923 1.6208 1.3230 0.9792 1.0282 1.0740 0.9845 1.1923 1.1054
24 1.3133 19476 1.9595 1.1989 0.9803 1.0290 1.0022 0.9819 1.1401 1.0937
36 1.7336 21289 2.2198 1.5687 0.9201 0.9395 0.94410.9190 1.0639 1.0442
48 1.7698 15115 1.2833 1.7333 0.9788 0.9734 0.9905 0.9608 1.0926 1.0829

Consumer price index growth rate: all items

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA Di#R FinalMA FinalAR ARMA
1 0.8779 0.8501 0.8567 0.9146 0.9146 0.8563 0.9130 0.8647 0.9512 0.8B11
2 0.9028 0.8720 0.8790 0.9946 0.9804 0.8895 0.9804 0.9040 0.9798 0.9p26
4 0.9139 0.9082 0.9000 0.9737 0.9328 0.8826 0.9328 0.8816 0.9430 0.9069
6 0.8800 0.8701 0.8811 0.9307 0.8853 0.8403 0.8853 0.8399 0.8900 0.9062
12 0.9921 1.0585 1.0140 1.0178 0.9845 0.9318 0.9845 0.9070 1.0255 1.0207
18 1.0114 1.0143 1.0083 1.0362 1.0138 1.0504 1.0847 1.0130 1.0368 1.1184
24 0.9810 1.0563 1.0743 0.9671 0.9460 0.9655 0.9938 0.9508 1.0340 1.0804
36 0.9844 1.1165 1.1126 1.0140 1.0179 1.0325 1.0309 1.0160 1.1187 281.1
48 0.9919 1.3307 1.3174 1.0908 1.0550 1.0415 1.0318 1.0554 1.1554 832.1

Producer price index growth rate: all manufacturing

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaiR FinalMA Final AR ARMA
1 1.0079 1.0035 1.0094 1.0097 1.0097 0.9985 1.0070 1.0175 0443. 0.9931
2 1.0088 0.9732 0.9835 1.0317 1.0077 0.9852 1.0077 0.9874 0494. 0.9729
4 0.9841 1.0255 1.0280 1.0115 0.9810 0.9986 0.9810 0.9852 0483. 0.9803
6 0.9759 1.0083 1.0103 0.9885 0.9701 0.9830 0.9701 0.9781 9958. 0.9580
12 1.0246 1.0274 1.0294 1.0183 1.0142 0.9916 1.0142 0.9942 0.9973 1.0123
18 0.9740 0.9998 1.0026 0.9905 0.9828 0.9789 0.9837 0.9815 0.9894 84D.9
24 0.9927 1.0204 1.0230 1.0159 1.0027 0.9956 1.0018 0.9981 0.9984 040.¢
36 1.0363 1.0763 1.0947 0.9850 0.9831 0.9790 0.9814 0.98040.9755  0.9842
48 0.9890 1.0761 1.0632 0.9927 1.0108 1.0032 1.0050 1.0110 0.9969 143.Q

Note — The numbers in bold character indicate which model yields the |doresast MSE.
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Table 4: RMSE relative to ARMAp, q) forecasts — Canadian data

Employment growth rate

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaRR FinalMA Final AR
1 1.0069 1.0014 1.0758 0.9707 0.9707 0.9270 0.9707 0.9458 1.0208
2 0.9784 0.9662 0.9371 0.9907 0.9830 0.8976 0.9830 0.91521.0500
4 1.0541 1.0800 1.1137 0.9725 0.9343 0.9243 0.9343 0.9166 1.0440
6 1.1915 1.1395 1.1654 1.1118 0.9749 0.9630 0.9749 0.9276 1.0603
12 0.9128 1.0406 1.1220 0.9667 0.9214 0.9474 0.9214 0.9236 1.0120
18 1.0978 14405 1.4663 1.1969 0.8858 0.9302 0.9716 0.8906 1.0786
24 1.2008 1.7807 1.7916 1.0962 0.8963 0.9408 0.9163 0.8978 1.0424
36 1.6602 2.0388 2.1258 1.5023 0.8812 0.8997 0.9041 0.8801 1.0189
48 1.6343 1.3958 1.1851 1.6006 0.9039 0.8989 0.9147 0.8872 1.0090

Consumer price index growth rate: all items

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA Di&R Final MA  Final AR
1 0.9964 0.9648 0.9723 1.0380 1.0380 0.9719 1.0362 0.9814 1.0796
2 0.9785 0.9452  0.9527 1.0780 1.0626 0.9641 1.0626 0.9798 1.0620
4 1.0077 1.0014 0.9924 1.0737 1.0286 0.9732 1.0286 0.9721 1.0398
6 0.9711 0.9602 0.9723 1.0270 0.9769 0.9273 0.9769 0.9268 0.9821
12 0.9720 1.0370 0.9934 0.9972 0.9645 0.9129 0.9645 0.8886 1.0047
18 0.9043 0.9069 0.9016 0.9265 0.9065 0.9392 0.9699 0.9058 .9270
24 0.9080 0.9777 0.9944 0.8951 0.8756 0.8937 0.9198 0.8800 .957D
36 0.8722 0.9892 0.9857 0.8984 0.9018 0.9148 0.9134 0.9002 .991D
48 0.8383 1.1247 1.1134 0.9219 0.8916 0.8802 0.8720 0.8920 0.9765

Producer price index growth rate: all manufacturing

Horizon  Unrestricted DI DIAR Direct Sequential DiagMA DiaR FinalMA Final AR
1 1.0149 1.0105 1.0164 1.0167 1.0167 1.0054 1.0140 1.0246 516.0
2 1.0369 1.0003 1.0109 1.0604 1.0358 1.0126 1.0358 1.0149 791.0
4 1.0039 1.0461 1.0487 1.0318 1.0007 1.0187 1.0007 1.0050 694.0
6 1.0187 1.0525 1.0546 1.0318 1.0126 1.0261 1.0126 1.0210 393.0
12 1.0122 1.0149 1.0169 1.0059 1.0019 0.9796 1.0019 0.9821 0.9852
18 0.9896 1.0159 1.0187 1.0064 0.9986 0.9946 0.9995 0.9973 1.0053
24 0.9887 1.0163 1.0189 1.0119 0.9987 0.9916 0.9978 0.9941 0.9944
36 1.0529 1.0936 1.1123 1.0008 0.9989 0.9947 0.9972 0.9961 0.9912
48 0.9751 1.0609 1.0482 0.9787 0.9965 0.9891 0.9908 0.9967 0.9828

Note — The numbers in bold character present cases where the ARMAImotperforms the factor-based models in
terms of MSE.
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Table 5: MSE of FAVARMA relative to FAVAR forecasting models — Canadiiata

Employment growth rate
VARMA/Direct VARMA/Sequential
Horizon | Diag MA Diag AR Final MA  Final AR | Diag MA Diag AR Final MA  Final AR
1 0.9500 0.9551 0.9671 0.9515 0.9500 0.9551 0.9671 0.9515
2 0.8934 0.9060 0.8971 0.8982 0.8508 0.8628 0.8544 0.8554
4 0.8353 0.9248 0.8375 0.8852 0.7325 0.8110 0.7344 0.7762
6 0.7875 0.8936 0.7836 0.8385 0.6836 0.7757 0.6802 0.7279
12 0.9154 1.1173 0.9215 0.9486 0.7315 0.8928 0.7364 0.7580
18 0.9858 1.4161 0.9956 1.0510 0.8403 1.2071 0.8487 0.8959
24 0.9733 1.7694 0.9833 1.0921 0.9075 1.6496 0.9168 1.0182
36 0.7971 2.4510 0.7993 0.9540 0.9457 2.9080 0.9484 1.1318
48 0.8968 5.0005 0.8969 1.0559 0.9581 5.3424 0.9582 1.1281
Consumer price index growth rate: all items
VARMA/Direct VARMA/Sequential
Horizon | Diag MA Diag AR FinalMA Final AR | Diag MA Diag AR FinalMA Final AR
1 0.9759 0.9845 0.9787 0.9763 0.9759 0.9845 0.9787 0.9763
2 0.9424 0.9291 0.9456 0.9341] 0.9312 0.9180 0.9343 0.9229
4 0.9029 0.8817 0.9016 0.8811] 0.8732 0.8527 0.8720 0.8521
6 0.9023 0.8891 0.8994 0.8825 0.8370 0.8248 0.8343 0.8186
12 0.9587 0.9778 0.9573 0.9429 0.8339 0.8505 0.8327 0.8201
18 1.0347 1.1696 1.0371 1.0674| 0.8843 0.9996 0.8863 0.9122
24 1.0532 1.3283 1.0556 1.1260, 0.9229 1.1640 0.9250 0.9867
36 0.9540 1.6253 0.9512 1.0622 0.9571 1.6305 0.9542 1.0655
48 1.0079 2.5086 1.0050 1.0946/ 0.9663 2.4048 0.9635 1.0494
Producer price index growth rate: all manufacturing
VARMA/Direct VARMA/Sequential
Horizon | Diag MA Diag AR Final MA Final AR | Diag MA Diag AR Final MA  Final AR
1 0.9909 1.0221 0.9597 0.9831 0.9909 1.0221 0.9597 0.9831
2 0.9685 0.9808 0.9648 0.9540 0.9567 0.9689 0.9531 0.9424
4 0.9624 1.0257 0.9516 0.9417 0.9840 1.0487 0.9730 0.9628
6 0.9611 1.0389 0.9604 0.9593 0.9847 1.0644 0.9840 0.9829
12 0.8846 1.1051 0.8828 0.9618 1.0062 1.2570 1.0042 1.0941
18 0.8527 1.0567 0.8542 0.9274 0.9213 1.1416 0.9228 1.0020
24 0.9273 1.2462 0.9244 1.0213 0.8837 1.1875 0.8809 0.9732
36 0.8439 1.4783 0.8495 0.9246 0.8795 1.5408 0.8854 0.9637
48 0.8858 2.4185 0.8904 0.9469 0.8695 2.3742 0.8741 0.9295

Note — The numbers in bold character indicate cases where the FAVARMEIperforms better than the FAVAR model.
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E. DATA

The data used in our empirical application are presented in this appendidatd@re taken from
Boivin, Giannoni and Stevanovic (2009a), while the Canadian data@reBoivin, Giannoni and
Stevanovic (2009b). The transformation codes (labeled T-Code) aneo transformation; 2 - first
difference; 4 - logarithm; 5 - first difference of logarithm.
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No.
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62

Series Code

IPS10
IPS11
IPS12
IPS13
IPS14
IPS18
IPS25
IPS29
1PS299
IPS306
IPS32
IPS34
IPS38
IPS43
PMP
PMI
UTL11
YPR
YPDR
YP@VO00C
SAVPER
SAVPRATE

LHEL
LHELX
LHEM
LHNAG
LHTUR
LHU14
LHU15
LHU26
LHU27
LHU5
LHUG80
LHUEM
AHPCON
AHPMF
PMEMP
CES002
CES003
CES004
CESO11
CES015
CES017
CES033
CES046
CES048
CES049
CESO053
CESO088
CES140
CES151
CES153
CES154
CES155
CES156
CES275
CES277
CES278

JQCR
JQCNR
JQCDR
JQCSVR

T-Code

5
5
5
5
5
5
5
5
5
5
5
5
5
5
1
1
1
5
5
5
2
1

S
GOk RrRrRROOOOOOOOOOOaRPRIRPRRRRRPROORG

oo,

US Data

Series Description
Real output and income

INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX

INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL

INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS

INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS
INDUSTRIAL PRODUCTION INDEX - AUTOMOTIVE PRODUCTS
INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT
INDUSTRIAL PRODUCTION INDEX - DEFENSE AND SPACE EQUIPME
INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS

INDUSTRIAL PRODUCTION INDEX - FUELS

INDUSTRIAL PRODUCTION INDEX - MATERIALS

INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC)

NAPM PRODUCTION INDEX (PERCENT)
PURCHASING MANAGERS' INDEX (SA)
CAPACITY UTILIZATION - MANUFACTURING (SIC)

PERS INCOME CH 2000 $,SA-US

DISP PERS INCOME,BILLIONS OF CH (2000) $,SAAR-US

PERS INCOME LESS TRSF PMT CH 2000 $,SA-US

PERS SAVING,BILLIONS OF $,SAAR-US

PERS SAVING AS PERCENTAGE OF DISP PERS INCOME,PERCENT,SAAR-U

Employment and hours

INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967980D;SA)

EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CIF

CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA)

CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUSSA)

UNEMPLOYMENT RATE: BOTH SEXES, 16-19 YEARS (%,SA)

UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)

UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)

UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS. BA

UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA)

UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUSA)

UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (%\)

CIVILIAN LABOR FORCE: UNEMPLOYED, TOTAL (THOUS.,SA)

AVG HR EARNINGS OF PROD WKRS: CONSTRUCTION ($,SA)

AVG HR EARNINGS OF PROD WKRS: MANUFACTURING ($,SA)

NAPM EMPLOYMENT INDEX (PERCENT)

EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE

EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING

EMPLOYEES ON NONFARM PAYROLLS - NATURAL RESOURCES AND MING

EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION

EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING

EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS

EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS

EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING

EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATIOANIND UTILITIES

EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE

EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE

EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES

EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT

AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS PRIVATE NONFARM PAYROLLS - GOODS-PRODUCING
AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS PRIVATE NONFARM PAYROLLS - CONSTRUCTION
AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS PRIVATE NONFARM PAYROLLS - MANUFACTURING
AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS PRIVATE NONFARM PAYROLLS - MANUFACT. OVERTIME HOURS
AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS PRIVATE NONFARM PAYROLLS - DURABLE GOODS
AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WOERS ON PRIVATE NONFARM PAYROLLS - GOODS-PRODUCING
AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WOERS ON PRIVATE NONFARM PAYROLLS - CONSTRUCTION
AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WOERS ON PRIVATE NONFARM PAYROLLS - MANUFACTURING

Real Consumption

REAL PERSONAL CONS EXP QUANTITY INDEX (200=100), SAAR

REAL PERSONAL CONS EXP-NONDURABLE GOODS QUANTITY INDEX (@8100), SAAR
REAL PERSONAL CONS EXP-DURABLE GOODS QUANTITY INDEX (20080), SAAR
REAL PERSONAL CONS EXP-SERVICES QUANTITY INDEX (200=}08AAR
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Real inventories and orders

63 MOCMQ 5 NEW ORDERS (NET) - CONSUMER GOODS and MATERIALS, 1996 DOLRS (BCI)
64 MSONDQ 5 NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI
65 PMDEL 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)
66 PMNO 1 NAPM NEW ORDERS INDEX (PERCENT)
67 PMNV 1 NAPM INVENTORIES INDEX (PERCENT)
Housing starts
68 XMTOSA 4 RESIDENTIAL CONSTRUCTION PRIVATE HOUSING UNITS STARTE TOTAL UNITS (THOUS.,SAAR)
69 HUSTSZ 4 HOUSING STARTS: TOTAL NEW PRIV HOUSING UNITS (THOUSABR)
70 HSFR 4 HOUSING STARTS:NONFARM(1947-58); TOTAL FARM&NONFARNI®59-)(THOUS.,SA
71 HSMW 4 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.
72 HSNE 4 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.
73 HSSOU 4 HOUSING STARTS:SOUTH (THOUS.U.)S.A.
74 HSWST 4 HOUSING STARTS:WEST (THOUS.U.)S.A.
Exchange rates
75 EXRCAN 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)
76 EXRUK 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
7 EXRUS 5 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)
Price indexes
78 PMCP 1 NAPM COMMODITY PRICES INDEX (PERCENT)
79 PW561 5 PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA)
80 PWCMSA 5 PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA)
81 PWFCSA 5 PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA)
82 PWFSA 5 PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)
83 PWIMSA 5 PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENT®2£100,SA)
84 PUNEW 5 CPI-U: ALL ITEMS (82-84=100,SA)
85 PUS 5 CPI-U: SERVICES (82-84=100,SA)
86 PUXF 5 CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)
87 PUXHS 5 CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA)
88 PUXM 5 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA)
89 PUXX 5 CPI-U: ALL ITEMS LESS FOOD AND ENERGY (82-84=100,SA)
90 PUC 5 CPI-U: COMMODITIES (82-84=100,SA)
91 PUCD 5 CPI-U: DURABLES (82-84=100,SA)
92 PU83 5 CPI-U: APPAREL & UPKEEP (82-84=100,SA)
93 PU84 5 CPI-U: TRANSPORTATION (82-84=100,SA)
94 PU85 5 CPI-U: MEDICAL CARE (82-84=100,SA)
Stock prices
95 FSDJ 5 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE
96 FSDXP 1 S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNU)
97 FSPCOM 5 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
98 FSPIN 5 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
99 FSPXE 1 S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)
Money and credit quantity aggregates
100 FM1 5 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA)
101 FM2 5 MONEY STOCK:M2(M1+O’'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SMIME DEP(BILS,
102 FMFBA 5 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$A)
103 FMRNBA 2 DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MEA
104 FMRRA 5 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS($/SA)
105 CCINRV 5 CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)
Miscellaneous
106 UOMOB83 1 COMPOSITE INDEXES LEADING INDEX COMPONENT INDEX OF CGBUMER EXPECTATIONS UNITS: 1966.1=100 NSA, CONFBOARD AND U.MICH.
Interest rates and bonds
107  FYGM3 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,N$A
108 FYGM6 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,N$A
109 FYGT1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANNSH)
110 FYGT10 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER KNSA)
111 FYGT20 INTEREST RATE: U.S.TREASURY CONST MATURITIES,20-YR.(% PER KNSA)
112 FYGT3 INTEREST RATE: U.S.TREASURY CONST MATURITIES,3-YR.(% PER ANNGH)
113 FYGT5 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANNGH)
114 FYPR PRIME RATE CHG BY BANKS ON SHORT-TERM BUSINESS LOANS(% PER ANNSA)
115 FYAAAC BOND YIELD: MOODY'’S AAA CORPORATE (% PER ANNUM)
116 FYAAAM BOND YIELD: MOODY'S AAA MUNICIPAL (% PER ANNUM)
117 FYAC BOND YIELD: MOODY'S A CORPORATE (% PER ANNUM,NSA)
118 FYAVG BOND YIELD: MOODY'’S AVERAGE CORPORATE (% PER ANNUM)

119 FYBAAC BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)

120 SFYGM3 FYGM3-FYFF
121  SFYGM6 FYGM6-FYFF
122 SFYGT1 FYGT1-FYFF
123 SFYGT5 FYGT5-FYFF
124  SFYGT10 FYGT10-FYFF
125  SFYAAAC FYAAAC-FYFF

126 SFYBAAC FYBAAC-FYFF
127 FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)
128 Bspread10Y 1 FYBAAC-FYGT10

PRrRP L ppRprRrPPRPRPRPR LR RR
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66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

StatCan no

v41690973
v41690974
v41690993
v41691046
v41691051
v41691055
v41691065
v41691066
v41691108
v41691129
v41691153
v41691170
v41692942
V41691232
v41691233
v41691238
V41691237
V41691239
v41691219
v41691222
v41691223
v41691225
v41691229
v41691230
v41691231
v41691244
v41691369
v41691363
v41691367
v41691379
v41691503
V41691497
v41691501
V41691513
v41691638
V41691632
v41691636
v41691648
v41691773
V41691767
V41691771
v41691783
v41691909
v41691903
v41691907
v41691919
v41692045
v41692039
V41692043
V41692055
v41692181
V41692175
V41692179
v41692191
v41692317
v41692311
v41692315
v41692327
v41692452
v41692446
v41692450
v41692462
v41692588
v41692582
v41692586

v14098
V41651
v13824
v41560
v13859
v41595
v13866
v41602
v13873
v41609
v13880
v41616
v13887
v41623
v13894

Code

oo aoaaoaaoaoaoaoaaoaaooaoaoaaoaoaaoaaoaaoaoaaoaaoaoaoaaoaaoaaaaaoaaaaaaaaoaoaoa

PRPRPRPRRPPRPRRPEPRRPRE

Canadian Data
Series category
Table 326-0020 Consumer Price Index Canada, Provinces
All-items (2002=100)
Food (2002=100)
Dairy products (2002=100)
Food purchased from restaurants (2002=100)
Rented accommodation (2002=100)
Owned accommodation (2002=100)
Natural gas (2002=100)
Fuel oil and other fuels (2002=100)
Clothing and footwear (2002=100)
Private transportation (2002=100)
Health and personal care (2002=100)
Recreation, education and reading (2002=100)
All-items excluding eight of the most volatile componera(k of Canada definition) (2002=100)
All-items excluding food (2002=100)
All-items excluding food and energy (2002=100)
All-items excluding energy (2002=100)
Food and energy (2002=100)
Energy (2002=100)
Housing (1986 definition) (2002=100)
Goods (2002=100)
Durable goods (2002=100)
Non-durable goods (2002=100)
Goods excluding food purchased from stores and energy 2019
Services (2002=100)
Services excluding shelter services (2002=100)
Newfoundland and Labrador; All-items (2002=100)
Newfoundland and Labrador; All-items excluding food anérery (2002=100)
Newfoundland and Labrador; Goods (2002=100)
Newfoundland and Labrador; Services (2002=100)
Prince Edward Island; All-items (2002=100)
Prince Edward Island; All-items excluding food and ener2902=100)
Prince Edward Island; Goods (2002=100)
Prince Edward Island; Services (2002=100)
Nova Scotia; All-items (2002=100)
Nova Scotia; All-items excluding food and energy (20025100
Nova Scotia; Goods (2002=100)
Nova Scotia; Services (2002=100)
New Brunswick; All-items (2002=100)
New Brunswick; All-items excluding food and energy (2002610
New Brunswick; Goods (2002=100)
New Brunswick; Services (2002=100)
Quebec; All-items (2002=100)
Quebec; All-items excluding food and energy (2002=100)
Quebec; Goods (2002=100)
Quebec; Services (2002=100)
Ontario; All-items (2002=100)
Ontario; All-items excluding food and energy (2002=100)
Ontario; Goods (2002=100)
Ontario; Services (2002=100)
Manitoba; All-items (2002=100)
Manitoba; All-items excluding food and energy (2002=100)
Manitoba; Goods (2002=100)
Manitoba; Services (2002=100)
Saskatchewan,; All-items (2002=100)
Saskatchewan; All-items excluding food and energy (200251
Saskatchewan; Goods (2002=100)
Saskatchewan; Services (2002=100)
Alberta; All-items (2002=100)
Alberta; All-items excluding food and energy (2002=100)
Alberta; Goods (2002=100)
Alberta; Services (2002=100)
British Columbia; All-items (2002=100)
British Columbia; All-items excluding food and energy (20028)
British Columbia; Goods (2002=100)
British Columbia; Services (2002=100)

Table 026-0001 Building permits, residential values and nuier of units
Canada; Total dwellings (number of units) [D848383]

Canada; Total dwellings (dollars - thousands) [D845521]
Newfoundland and Labrador; Total dwellings (number of s)iD847651]
Newfoundland and Labrador; Total dwellings (dollars - thands) [D845363]
Prince Edward Island; Total dwellings (number of units) fi7858]

Prince Edward Island; Total dwellings (dollars - thousajB845370]
Nova Scotia; Total dwellings (number of units) [D847665]

Nova Scotia; Total dwellings (dollars - thousands) [D84B37

New Brunswick; Total dwellings (number of units) [D847672]

New Brunswick; Total dwellings (dollars - thousands) [D8858B

Quebec; Total dwellings (number of units) [D847679]

Quebec; Total dwellings (dollars - thousands) [D845391]

Ontario; Total dwellings (number of units) [D847686]

Ontario; Total dwellings (dollars - thousands) [D845398]

Manitoba; Total dwellings (number of units) [D847693]
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81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

v41630
v13901
V41637
v13908
V41644
v13831
V41567

V730040
V729972
V729973
V729974
V729975
V729976
V729981
V729987
V729988
V729989
V729990

V7677
V7680
V7681
V7682
V7683
V7684
V7686
V7678
V7679
V7688

v41881478
v41881480
v41881481
v41881482
v41881485
v41881486
v41881487
v41881488
v41881489
v41881494
v41881501
v41881524
v41881525
v41881527
v41881555
v41881564
v41881602
v41881606
v41881637
v41881654
v41881662
v41881663
v41881674
v41881675
v41881688
v41881689
v41881690
v41881699
v41881724
v41881756
v41881759
v41881776
v41881777
v41881779
v41881780

v1575728
v1575754
v1575886
v1575925
v1575903
v1575934
v1575958
v1575457
v1575493
v1575511
v1575557
v1575610
v3860051
v3822562
v3825177
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Manitoba; Total dwellings (dollars - thousands) [D845405]
Saskatchewan; Total dwellings (number of units) [D847700]
Saskatchewan; Total dwellings (dollars - thousands) [2825
Alberta; Total dwellings (number of units) [D847707]

Alberta; Total dwellings (dollars - thousands) [D845419]
British Columbia; Total dwellings (number of units) [D847714
British Columbia; Total dwellings (dollars - thousands) [[3826]

Table 027-0002 CMHC, housing starts, under constr and compt®ns, SA
Canada; Total units (units - thousands) [J9001]

Newfoundland and Labrador; Total units (units - thousafigi&)02]

Prince Edward Island; Total units (units - thousands) [3]00

Nova Scotia; Total units (units - thousands) [J7004]

New Brunswick; Total units (units - thousands) [J7005]

Quebec; Total units (units - thousands) [J7006]

Ontario; Total units (units - thousands) [J7008]

Manitoba; Total units (units - thousands) [J7011]

Saskatchewan; Total units (units - thousands) [J7012]

Alberta; Total units (units - thousands) [J7013]

British Columbia; Total units (units - thousands) [J7014]

Table 377-0003 Business leading indicators for Canada

Average work week, manufacturing; Smoothed (hours) [D22)0

Housing index; Smoothed (index, 1992=100) [D100043]

United States composite leading index; Smoothed (inde322200) [D100044]
Money supply; Smoothed (dollars, 1992 - millions) [D100p45

New orders, durable goods; Smoothed (dollars, 1992 - ma¢D100046]
Retail trade, furniture and appliances; Smoothed (dolk#92 - millions) [D100047]
Shipment to inventory ratio, finished products; Smoothatidy [D100049]
Stock price index, TSE 300; Smoothed (index, 1975=1000P[50]
Business and personal services employment; Smoothed fgertitousands) [D100051]
Composite index of 10 indicators; Smoothed (index, 19923 DO00053]

Table 379-0027 GDP at basic prices, by NAICS, Canada, SA, 2B@onstant prices
All industries [T001] (dollars - millions)

Business sector, goods [T003] (dollars - millions)

Business sector, services [T004] (dollars - millions)

Non-business sector industries [T005] (dollars - millipns
Goods-producing industries [T008] (dollars - millions)
Service-producing industries [T009] (dollars - millions)

Industrial production [T010] (dollars - millions)

Non-durable manufacturing industries [T011] (dollars Hims)

Durable manufacturing industries [T012] (dollars - mili&)

Agriculture, forestry, fishing and hunting [11] (dollars #lons)

Mining and oil and gas extraction [21] (dollars - millions)

Residential building construction [230A] (dollars - miltis)
Non-residential building construction [230B] (dollars -liwins)
Manufacturing [31-33] (dollars - millions)

Wood product manufacturing [321] (dollars - millions)

Paper manufacturing [322] (dollars - millions)

Rubber product manufacturing [3262] (dollars - millions)

Non-metallic mineral product manufacturing [327] (doflamillions)
Machinery manufacturing [333] (dollars - millions)

Electrical equipment, appliance and component manufact{835] (dollars - millions)
Transportation equipment manufacturing [336] (dollarsitioms)

Motor vehicle manufacturing [3361] (dollars - millions)

Aerospace product and parts manufacturing [3364] (dollarlions)
Railroad rolling stock manufacturing [3365] (dollars - ritis)

Wholesale trade [41] (dollars - millions)

Retail trade [44-45] (dollars - millions)

Transportation and warehousing [48-49] (dollars - milipn

Pipeline transportation [486] (dollars - millions)

Finance, insurance, realA estate, rental and leasing andgeaent of companies and enterprises [5A] (dollars - oni)
Educational services [61] (dollars - millions)

Health care and social assistance [62] (dollars - millions)

Federal government public administration [911] (dollansilions)

Defence services [9111] (dollars - millions)

Provincial and territorial public administration [912]qjthrs - millions)
Local, municipal and regional public administration [918bllars - millions)

Tables 329-00(46,38,39) Industrial price indexes, 1997=100

Transformer equipment (index, 1997=100) [P5648]

Electric motors and generators (index, 1997=100) [P5674]

Diesel fuel (index, 1997=100) [P5806]

Light fuel oil (index, 1997=100) [P5845]

Heavy fuel oil (index, 1997=100) [P5823]

Lubricating oils and greases (index, 1997=100) [P5854]

Asphalt mixtures and emulsions (index, 1997=100) [P5878]

Industrial trucks, tractors and parts (index, 1997=1068¢9]

Parts, air conditioning and refrigeration equipment (ide97=100) [P5365]
Food products industrial machinery and equipment (ind@27%£100) [P5383]
Trucks, chassis, tractors, commercial (index, 1997=1B8%p9]

Motor vehicle engine parts (index, 1997=100) [P5482]

Motor vehicle brakes (index, 1997=100) [P5512]

All manufacturing (index, 1997=100) [P6253]

Total excluding food and beverage manufacturing (indeg7£300) [P6491]
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159  v3825178 5 Food and beverage manufacturing [311, 3121] (index, 199@y{P6492]
160  v3825179 5 Food and beverage manufacturing excluding alcoholic g (index, 1997=100) [P6493]
161  v3825180 5 Non-food (including alcoholic beverages) manufacturimgléx, 1997=100) [P6494]
162  v3825181 5 Basic manufacturing industries [321, 322, 327, 331] (ind®§7=100) [P6495]
163  v3825183 5 Primary metal manufacturing excluding precious metaldgin 1997=100) [P6497]
Table 176-0001 Commodity price index, US$ (index, 82-90=0)
164  v36382 5 Total, all commodities (index, 82-90=100) [B3300]
165 v36383 5 Total excluding energy (index, 82-90=100) [B3301]
166  v36384 5 Energy (index, 82-90=100) [B3302]
167  v36385 5 Food (index, 82-90=100) [B3303]
168 v36386 5 Industrial materials (index, 82-90=100) [B3304]
Tables 176-00(46,47), 184-0002 Stock market statistics
169 v37412 5 Toronto Stock Exchange, value of shares traded (dollardliors) [B4213]
170 v37413 5 Toronto Stock Exchange, volume of shares traded (sharelionm) [B4214]
171 v37414 5 United States common stocks, Dow-Jones industrials, finglex) [B4218]
172 v37415 5 United States common stocks, Dow-Jones industrials, lodei) [B4219]
173 v37416 5 United States common stocks, Dow-Jones industrials, ¢index) [B4220]
174 v37419 5 New York Stock Exchange, customers’ debit balances (doHlarillions) [B4223]
175  v37420 5 New York Stock Exchange, customers’ free credit balancégdo- millions) [B4224]
176  v122620 5 Standard and Poor’s/Toronto Stock Exchange Composite Jmtiese (index, 1975=1000) [B4237]
177 v122628 1 Toronto Stock Exchange, stock dividend yields (composifielsing quotations (percent) [B4245]
178 v122629 1 Toronto Stock Exchange, price earnings ratio, closingafimis (ratio) [B4246]
179 v6384 5 Total volume; Value of shares traded (dollars - millions}#fB0]
180  v6385 5 Industrials; Value of shares traded (dollars - millions}H58]
181 V6386 5 Mining and oils; Value of shares traded (dollars - milliof3%559]
Table 176-0064 Foreign exchange rates
183 v37426 1 United States dollar, noon spot rate, average (dollars)(BB4
184  v37437 1 United States dollar, 90-day forward noon rate (dollars)4&3
185 v37452 1 Danish krone, noon spot rate, average (dollars) [B3403]
186 v37456 1 Japanese yen, noon spot rate, average (dollars) [B3407]
187 v37427 1 Norwegian krone, noon spot rate, average (dollars) [B3409]
188  v37428 1  Swedish krona, noon spot rate, average (dollars) [B3410]
189  v37429 1  Swiss franc, noon spot rate, average (dollars) [B3411]
190  v37430 1 United Kingdom pound sterling, noon spot rate, averagddms)|[B3412]
191  v37431 1 United Kingdom pound sterling, 90-day forward noon rateléde) [B3413]
192 v37432 1 United States dollar, closing spot rate (dollars) [B3414]
193 v37433 1 United States dollar, highest spot rate (dollars) [B3415]
194  v37434 1 United States dollar, lowest spot rate (dollars) [B3416]
195 v37435 1 United States dollar, 90-day forward closing rate (do)l§@8417]
196 v41498903 1 Canadian dollar effective exchange rate index (CERI) (199@F(dbllars)

Table 176-0043 Interest rates

Bank rate, last Tuesday or last Thursday (percent) [B14079]

Bank rate (percent) [B14006]

Chartered bank administered interest rates - prime bus{pessent) [B14020]

Forward premium or discount (-), United States dollar in G&na month (percent) [B14034]

Prime corporate paper rate: 1 month (percent) [B14039]

Prime corporate paper rate: 2 month (percent) [B14084]

Prime corporate paper rate: 3 month (percent) [B14017]

Bankers’ acceptances: 1 month (percent) [B14033]

Government of Canada marketable bonds, average yield: &3Jyercent) [B14009]

Government of Canada marketable bonds, average yield: &5yercent) [B14010]

Government of Canada marketable bonds, average yield: ®dQ(gercent) [B14011]

Government of Canada marketable bonds, average yield: 6vgedrs (percent) [B14013]

Chartered bank - 5 year personal fixed term (percent) [B14045]

Chartered bank - non-chequable savings deposits (per&p[L9]

Treasury bill auction - average yields: 3 month (percentB817]

Treasury bill auction - average yields: 3 month, averagaktes (percent) [B14001]

Treasury bill auction - average yields: 6 month (percent4&i8]

Treasury bills: 2 month (percent) [B14082]

Treasury bills: 3 month (percent) [B14060]

Government of Canada marketable bonds, average yield,ge/efaVednesdays: 1-3 year (percent) [B14028]
Government of Canada marketable bonds, average yield,ge/efaVednesdays: 3-5 year (percent) [B14029]
Government of Canada marketable bonds, average yield,ge/efaVednesdays: 5-10 year (percent) [B14030]
Government of Canada marketable bonds, average yield,ge/efaVednesdays: over 10 years (percent) [B14003]
Average residential mortgage lending rate: 5 year (pey¢Ba#024]

Chartered bank - chequable personal savings deposit rate(ge[B14035]

Covered differential: Canada-United States 3 month Tredsillsy(percent) [B14036]

Covered differential: Canada-United States 3 month sham-paper (percent) [B14038]

First coupon of Canada Savings Bonds (percent) [B14040]

197  v122550
198  v122530
199  v122495
200  v122505
201 v122509
202 v122556
203 v122491
204 v122504
205  v122558
206 v122485
207  v122486
208  v122487
209  v122515
210  v122493
211 v122541
212 v122484
213 v122552
214 v122554
215  v122531
216 v122499
217 v122500
218  v122502
219  v122501
220  v122497
221 v122506
222 v122507
223 v122508
224 v122510
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Table 176-0051 Canada’s official international reserves

Total, Canada’s official international reserves (dollarsllioms) [B3800]

Convertible foreign currencies, United States dollarsléisl- millions) [B3801]
Convertible foreign currencies, other than United State#dcb - millions) [B3802]
Gold (dollars - millions) [B3803]

Reserve position in the International Monetary Fund (IMF)ligs - millions) [B3805]

225  v122396
226 v122397
227  v122398
228  v122399
229  v122401
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Table 176-0032 Credit measures

230 v36414 5 Total business and household credit; Seasonally adjudtdi@i(s - millions) [B165]

231  v36415 5 Household credit; Seasonally adjusted (dollars - mill)dB466]

232 v36416 5 Residential mortgage credit; Seasonally adjusted (dollanitlions) [B167]

233 v36417 5 Consumer credit; Seasonally adjusted (dollars - millioBSG8]

234  v36418 5 Business credit; Seasonally adjusted (dollars - millioB4)d9]

235 v36419 5 Other business credit; Seasonally adjusted (dollars iang) [B170]

236 v36420 5 Short-term business credit; Seasonally adjusted (dollaiflions) [B171]
Table 176-0025 Monetary aggregates

237 v37148 5 Currency outside banks (dollars - millions) [B1604]

238 v37153 5 Canadian dollar assets, total loans (dollars - millions) [E516

239 v37154 5 General loans (including grain dealers and installmenhfieacompanies) (dollars - millions) [B1606]

240  v37107 5 Total, major assets (dollars - millions) [B1611]

241 v37111 5 Canadian dollar assets, liquid assets (dollars - millioB&)B[L5]

242 v37112 5 Canadian dollar assets, less liquid assets (dollars - msl)ifB1616]

243 v37119 5 Total personal loans, average of Wednesdays (dollars iomsl [B1622]

244 v37120 5 Business loans, average of Wednesdays (dollars - millid§23]

245  v41552793 5 Currency outside banks and chartered bank deposits, heldri®ra public (including private sector float) (dollars 4lions)

246  v41552795 5 M1B (gross) (currency outside banks, chartered bank ctiguiposits, less inter-bank chequable deposits) (dollianillions)

247  v41552796 5 M2 (gross) (currency outside banks, chartered bank demashdatice deposits, chartered bank personal term deposits,
adjustments to M2 (gross) (continuity adjustments and-ibémk demand and notice deposits)) (dollars - millions)

248 v41552797 5 Currency outside banks and chartered bank deposits (imgyxtivate sector float) (dollars - millions)

249 v37130 5 Residential mortgages (dollars - millions) [B1632]

250  v41552798 5 M2+ (gross) (dollars - millions)

251 v37135 5 Chartered bank deposits, personal, term (dollars - mil)ifB$637]

252 v37138 5 Total, deposits at trust and mortgage loan companies (dolfaillions) [B1639]

253 v37139 5 Total, deposits at credit unions and caisses populairds(ge millions) [B1640]

254  v37140 5 Bankers’ acceptances (dollars - millions) [B1641]

255 v37145 5 Monetary base (notes and coin in circulation, chartered bad other Canadian Payments Association members’ deposits
with the Bank of Canada) (dollars - millions) [B1646]

256 v37146 5 Monetary base (notes and coin in circulation, chartered bad other Canadian Payments Association members’ deposits
with the Bank of Canada) (excluding required reserves) (toHanillions) [B1647]

257 v37147 5 Canada Savings Bonds and other retail instruments (dollaiiems) [B1648]

258  v41552801 5 M2++ (gross) (M2+ (gross), Canada Savings Bonds, non-monelainautual funds) (dollars - millions)

259  v37152 5 M1++ (gross) (dollars - millions) [B1652]

Table 282-0087 LFS, SA, Canada and provinces

Canada; Employment; Both sexes; 15 years and over; Seasadplsted (persons - thousands)

Canada; Unemployment rate; Both sexes; 15 years and ovenridigsadjusted (rate)

Newfoundland and Labrador; Employment; Both sexes; 15 ya@dover; Seasonally adjusted (persons - thousands)
Newfoundland and Labrador; Unemployment rate; Both seXegears and over; Seasonally adjusted (rate)
Prince Edward Island; Employment; Both sexes; 15 years aed 8easonally adjusted (persons - thousands)
Prince Edward Island; Unemployment rate; Both sexes; 15yaad over; Seasonally adjusted (rate)

Nova Scotia; Employment; Both sexes; 15 years and over; Saligadjusted (persons - thousands)

Nova Scotia; Unemployment rate; Both sexes; 15 years and $easonally adjusted (rate)

New Brunswick; Employment; Both sexes; 15 years and over;dedly adjusted (persons - thousands)
New Brunswick; Unemployment rate; Both sexes; 15 years and Seasonally adjusted (rate)

Quebec; Employment; Both sexes; 15 years and over; Seasadalsted (persons - thousands)

Quebec; Unemployment rate; Both sexes; 15 years and ovesoSaly adjusted (rate)

Ontario; Employment; Both sexes; 15 years and over; Sedga@uilisted (persons - thousands)

Ontario; Unemployment rate; Both sexes; 15 years and ovesd®elly adjusted (rate)

Manitoba; Employment; Both sexes; 15 years and over; Setigadiusted (persons - thousands)

Manitoba; Unemployment rate; Both sexes; 15 years and oeasdhally adjusted (rate)

Saskatchewan; Employment; Both sexes; 15 years and ovesoisaly adjusted (persons - thousands)
Saskatchewan; Unemployment rate; Both sexes; 15 years and3easonally adjusted (rate)

Alberta; Employment; Both sexes; 15 years and over; Sedgadjusted (persons - thousands)

Alberta; Unemployment rate; Both sexes; 15 years and ovas@rlly adjusted (rate)

British Columbia; Employment; Both sexes; 15 years and ovaas&gally adjusted (persons - thousands)
British Columbia; Unemployment rate; Both sexes; 15 years ard Seasonally adjusted (rate)

260  v2062811
261  v2062815
262 v2063000
263  v2063004
264  v2063189
265  v2063193
266  v2063378
267  v2063382
268  v2063567
269  v2063571
270  v2063756
271 v2063760
272 v2063945
273 v2063949
274  v2064134
275  v2064138
276 v2064323
277 v2064327
278  v2064512
279  v2064516
280  v2064701
281  v2064705
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Table 282-0088 Employment by industry

Total employed, all industries; Seasonally adjusted (pess thousands)

Goods-producing sector; Seasonally adjusted (personsiséimds)

Agriculture [1100-1129, 1151-1152]; Seasonally adjugpetsons - thousands)

Forestry, fishing, mining, oil and gas [1131-1133, 11412, 1453, 2100-2131]; Seasonally adjusted (persons - thos$a
Utilities [2211-2213]; Seasonally adjusted (persons ugzmds)

Construction [2361-2389]; Seasonally adjusted (persomsusands)

Manufacturing [3211-3219, 3271-3279, 3311-3399, 3116938221-3262]; Seasonally adjusted (persons - thousands)
Services-producing sector; Seasonally adjusted (pershiesisands)

Trade [4111-4191, 4411-4543]; Seasonally adjusted (psrsthousands)

Transportation and warehousing [4811-4931]; Seasondjlyséed (persons - thousands)

Finance, insurance, real estate and leasing [5211-5269;5331]; Seasonally adjusted (persons - thousands)
Professional, scientific and technical services [54119543easonally adjusted (persons - thousands)

Business, building and other support services [5511-5&84sonally adjusted (persons - thousands)

Educational services [6111-6117]; Seasonally adjustegs¢ms - thousands)

Health care and social assistance [6211-6244]; Seasadjligted (persons - thousands)

Information, culture and recreation [5111-5191, 71119f13easonally adjusted (persons - thousands)
Accommodation and food services [7211-7224]; Seasond]lysted (persons - thousands)

Other services [8111-8141]; Seasonally adjusted (persthuaisands)

Public administration [9110-9191]; Seasonally adjusfetgons - thousands)

282  v2057603
283  v2057604
284  v2057605
285  v2057606
286  v2057607
287  v2057608
288  v2057609
289  v2057610
290  v2057611
291  v2057612
292 v2057613
293  v2057614
294  v2057615
295  v2057616
296  v2057617
297  v2057618
298  v2057619
299  v2057620
300 v2057621
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301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

327
328
329
330
331
332

v183474
v183475
v183476
v183477
v191559
v191560
v191561
v191562
v21386488
v21386489
v21386492
v21386495
V21386496
v21386500
v21386505
v21386509
v21386512
v21386514
v21386515
v21386518
V21386522
V21386526
v21386531
V21386535
V21386539
V21386540

V4667
v4668
v4669
v4670
v4671
V4672
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Tables 228-00(01,41) Merchandise imports and exports Canad8A
Imports, United States, including Puerto Rico and Virgiaisls (dollars - millions) [D398058]
Imports, United Kingdom (dollars - millions) [D398059]

Imports, Other European Economic Community (dollars - onii§i) [D398060]
Imports, Japan (dollars - millions) [D398061]

Exports, United States, including Puerto Rico and Virgiansls (dollars - millions) [D399518]
Exports, United Kingdom (dollars - millions) [D399519]

Exports, Other European Economic Community (dollars - onitl) [D399520]
Exports, Japan (dollars - millions) [D399521]

Imports, total of all merchandise (dollars - millions)

Imports, Sector 1 Agricultural and fishing products (dalamillions)
Imports, Sector 2 Energy products (dollars - millions)

Imports, Sector 3 Forestry products (dollars - millions)

Imports, Sector 4 Industrial goods and materials (dollangllions)

Imports, Sector 5 Machinery and equipment (dollars - mitip

Imports, Sector 6 Automotive products (dollars - millions)

Imports, Sector 7 Other consumer goods (dollars - millions)

Imports, Sector 8 Special transactions trade (dollars liang)

Exports, total of all merchandise (dollars - millions)

Exports, Sector 1 Agricultural and fishing products (dallamillions)
Exports, Sector 2 Energy products (dollars - millions)

Exports, Sector 3 Forestry products (dollars - millions)

Exports, Sector 4 Industrial goods and materials (dollangdlions)

Exports, Sector 5 Machinery and equipment (dollars - nijo

Exports, Sector 6 Automotive products (dollars - millions)

Exports, Sector 7 Other consumer goods (dollars - millions)

Exports, Sector 8 Special transactions trade (dollarsliams)

Table 026-0008: Building permits, values by activity sectqrCanada
Total residential and non-residential (dollars - thousafif2677]
Residential (dollars - thousands) [D2681]

Non-residential (dollars - thousands) [D4898]

Industrial (dollars - thousands) [D2678]

Commercial (dollars - thousands) [D2679]

Institutional and governmental (dollars - thousands) [86
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