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Bruxelles, Campus du Solbosch, CP 114, avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium

Accepted 21 January 2005

Available online 9 April 2005
Abstract

We consider the problem of testing whether the observations X 1; . . . ;X n of a time series are

independent with unspecified (possibly nonidentical) distributions symmetric about a common

known median. Various bounds on the distributions of serial correlation coefficients are

proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry–Esséen–

Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to

compute. The performance of the bounds is evaluated and compared with traditional serial
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dependence tests in a simulation experiment. The procedures proposed are applied to U.S.

data on interest rates (commercial paper rate).

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let X 1;X 2; . . . ;X n be a time series of length n: In many situations, it is of interest
to test whether the X t’s are independent against an alternative of serial dependence,
say, at lag k ðkX1Þ: If under the null hypothesis the observations are assumed to be
identically distributed with known mean m; a natural test consists in rejecting the null
hypothesis for large or small values of the autocorrelation coefficient

rk ¼
Xn�k

t¼1

ðX t � mÞðX tþk � mÞ
Xn

t¼1

ðX � mÞ2
,

, (1)

where 1pkpn� 1: Under general regularity conditions, the distribution of rk is
approximately normal with mean zero and variance n�1; see Anderson (1971,
Chapter 8) or Brockwell and Davis (1991, Chapter 7).

When the observations are not identically distributed or their distributions are
heavy-tailed, such a procedure can clearly be inappropriate. In this paper, we study
the null hypothesis H0 under which the observations X 1; . . . ;X n are independent but
possibly nonidentically distributed, with distributions symmetric about known
medians mt: No assumption about the existence of the moments of X 1; . . . ;X n is
made, and the distribution of the observations can be discrete. Since X t can be
replaced by X t � mt; we can, without loss of generality, assume that m1 ¼ � � � ¼ mn ¼

0: Consequently, we shall henceforth set mt ¼ 0; t ¼ 1; . . . ; n:
The hypothesis H0 is ‘‘nonparametric’’ in the sense that no finite-dimensional

parameter vector can determine entirely the probability distribution of the
observations X 1;X 2; . . . ;X n: Following standard terminology [see Lehmann (1986,
Sections 3.1 and 3.5)], a test of H0 has level a if the probability of rejecting H0 is not

greater than a under any distribution of X ¼ ðX 1; . . . ;X nÞ
0 included in H0 ð0oao1Þ:

If moreover the supremum of the rejection probabilities over H0 is equal to a; one
says that the test has size a: Since H0 covers a wide spectrum of probability
distributions and because of the ‘‘parametric origin’’ of the coefficient rk; the
distribution of rk under H0 depends on the form of the distributions of the
observations. Without additional assumptions, it is unknown. Consequently, no
similar critical region of the type jrkj4c (where c is a nonstochastic critical point
which depends on the level of the test) does exist: i.e., for 0oco1; the probability of
the event jrkj4c is not constant over the set of data generating processes (DGP) in
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H0; and finding a valid critical value involves bounding the distribution of rk over H0

or considering data-dependent critical regions for rk: In particular, there is strictly no
guarantee that the actual sizes of tests based on the asymptotic (normal)
distributions of rk will be less than or equal to their nominal level (as tests of H0)
in finite samples. The same will hold a fortiori for critical values obtained under
parametric assumptions, e.g., the assumption that X 1; . . . ;X n are independent and
identically distributed (i.i.d.) random variables according to a Nð0; s2Þ distribution
[in which case exact critical values may be computed using Imhof’s algorithm]: such
critical values—though they belong to daily practice—simply do not yield valid tests
of the nonparametric hypothesis H0:

The objective of this paper is to develop finite-sample (a-level) tests based on rk for
the nonparametric null hypothesis H0: In other words, we need to ensure that the
probability of rejecting H0 is not greater than a under any DGP in H0: This problem
is quite distinct from the one where one tries to approximate the distribution of rk

under some specific distribution included in H0 (like the i.i.d. Gaussian model).
Following a classical nonparametric technique, we shall do this here by using an
appropriate conditioning. When X 1;X 2; . . . ;X n are absolutely continuous, the vector
of absolute values jX j ¼ ðjX 1j; . . . ; jX njÞ

0 is a complete sufficient statistic for H0:
Further, classical arguments of similarity and Neyman structure lead one to consider
tests that are conditional with respect to the complete sufficient statistic jX j; see
Lehmann (1986, Chapter 4). Indeed, conditioning on jX j is a necessary requirement
to obtain a valid test under conditions of general heterogeneity (heteroskedasticity);
see Lehmann and Stein (1949), Pratt and Gibbons (1981, Section 5.10), Dufour and
Hallin (1991, Section 1), and Dufour (2003, Section 4.2). The conditional
distribution of X ¼ ðX 1;X 2; . . . ;X nÞ

0 given jX j is then determined by the distribution
of the signs of X 1; . . . ;X n: Since, under H0; the signs are independent symmetric
Bernoulli variables, the conditional distribution of rk (given the vector of absolute
values jX j) may in principle be computed, e.g., by enumeration. In practice, however,
the conditional distribution of rk depends on each specific sample, because it is a
function of jX j; and so finding critical values may be difficult. This problem is also
met in the well-known case of permutation t-tests; see Pratt and Gibbons (1981,
Chapter 4).

For the problem of testing H0 against location-shift alternatives, simple bounds
for the conditional and unconditional distributions of the t-statistic were provided in
Edelman (1986, 1990) and Dufour and Hallin (1991, 1993); similar bounds for
general linear signed rank statistics have also been proposed in Dufour and Hallin
(1992). Beyond the important advantage of exactness for any sample size, extensive
comparisons in Dufour and Hallin (1991, 1992, 1993) indicate that the bounds
studied (exponential, Chebyshev-type, Eaton-type, Berry–Esséen) can be surpris-
ingly tight, especially if one takes the minimum of the various bounds.

In this paper, we give analogous results for tests of H0 based on rk against serial
dependence alternatives. Four types of bounds are presented: (1) exponential bounds
(Proposition 1); (2) improved Eaton bounds (Proposition 2); (3) Chebyshev-type
bounds (Proposition 3); (4) Berry–Esséen–Zolotarev bounds (Proposition 4). The
exponential bounds are based on the conditional moment generating function of rk
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(given jX j), the improved Eaton and Chebyshev-type bounds on conditional
moments of rk (a truncated third moment in the case of the Eaton bound), while
the Berry–Esséen–Zolotarev bound is based on the normal distribution function.
The exponential, Eaton, Chebyshev and Berry–Esséen bounds extend to the case
of autocorrelation coefficients the bounds proposed in Dufour and Hallin (1991,
1992, 1993).

All these bounds are exact in finite samples and simple to compute. They are
applicable despite the presence of general forms of nonnormality and hetero-
skedasticity (provided the symmetry hypothesis holds). In particular, no assumption
on the existence of moments is required, and the variables considered may have
continuous or discrete distributions. None of the bounds given uniformly dominates
the others. While the three first classes of bounds are especially useful to obtain
upper bounds for small tail areas, the Berry–Esséen bounds can be tighter for larger
tail areas (i.e., tails associated with points that are closer to the center of the
distribution) and yield lower bounds on tail areas as well. Conservative conditional
(given jX j) as well as unconditional conservative p-values, or critical points, for tests
based on rk can be obtained from any one of these bounds. Since all the bounds are
simple to compute, the obvious strategy here is to take the smallest p-value yielded
by the different bounds (or, equivalently, the tightest critical point). Such p-values
provide a useful nonparametric check on the significance of tests based on
autocorrelation coefficients.

The exponential bounds are described in Section 2, the Eaton and Chebyshev
bounds are given in Section 3, while the Berry–Esséen bounds are derived in
Section 4. In Section 5, simulation results on the performance of the bounds are
presented. In Section 6, we illustrate the use of the bounds by applying them to data
on commercial paper interest rates in the U.S. We conclude in Section 7.
2. Exponential bounds

In the following proposition, we derive exponential bounds for the tail areas of the
conditional distribution of rk given jX j under the null hypothesis that X 1; . . . ;X n are
independent with distributions symmetric about zero. The notation a.s. means
almost surely, while the symbol ‘‘:¼’’ represents a definition. The proofs of the
propositions appear in Appendix A.

Proposition 1 (Exponential bounds). Let X 1; . . . ;X n be independent random variables

with distributions symmetric about zero, jX j ¼ ðjX 1j; . . . ; jX njÞ
0; and

rk:¼
Xn�k

t¼1

X tX tþk

Xn

t¼1

X 2
t ; 1pkpn� 1;

,
(2)

wkt:¼jX tX tþkj
Xn�k

t¼1

X 2
tX

2
tþk

 !1=2

; t ¼ 1; . . . ; n� k

,
, (3)
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where we use the convention 0=0 ¼ 0: Then the conditional distribution of tk given jX j

is symmetric about zero and

P½rkXy j jX j�pBkðyk; jX jÞp expð�y2
kÞ
Yn�k

t¼1

coshðwktykÞ

p expð�y2
kÞ½coshðyk=

ffiffiffiffiffi
n�k

p
Þ�n
�
kp expð�y2

k=2Þ ð4Þ

a.s., for all y40 and 1pkpn� 1; where yk:¼y=DkðjX jÞ; coshðxÞ:¼ðex þ e�xÞ=2;
n�k:¼cardðft : jX tX tþkja0; 1ptpn� kgÞ is the number of products X tX tþk different

from zero,

DkðjX jÞ:¼
Xn�k

t¼1

X 2
t X 2

tþk

 !1=2 Xn

t¼1

X 2
t

 !,
, (5)

Bkðy; jX jÞ:¼ inf
zX0

expð�zyÞ
Yn�k

t¼1

coshðwktzÞ

( )
(6)

and the four bounds in (4) are set equal to zero when DkðjX jÞ ¼ 0:

From the symmetry of the conditional distribution of rk; it is clear that
P½jrkjXy j jX j� ¼ 2P½rkXy j jX j� ¼ 2P½rkp� y j jX j� a.s., so that (4) can also be used
to bound P½rkp� y� and P½jrkjXy j jX j� for any y40: In (4), four bounds on the tail
areas P½rkXy j jX j� are given. Denote them by E1kpE2kpE3kpE4k in ascending
order. These bounds are increasingly looser, but the larger ones are easier to
compute. In particular, E2k;E3k and E4k only require information about the second
empirical moments of the sample (rk and

P
X 2

t ), which may be useful when the
complete observation vector X ¼ ðX 1; . . . ;X nÞ

0 is not available to an investigator.
The exponential bound E4k ¼ expð�y2

k=2Þ is similar to a bound given by Edelman
(1986) and Efron (1969) for the case of t-statistics; for an earlier related result, see
also Hoeffding (1963). In contrast with the case of t-statistics, however, this bound
now explicitly depends on jX j through DkðjX jÞ: The second largest bound E3k ¼

expð�y2
kÞ½coshðyk=

ffiffiffiffiffi
n�k

p
Þ�n
�
k uniformly improves the latter by explicitly taking into

account the sample size and the lag. It is based on a result given by Eaton (1970) for
linear combinations of independent Bernoulli variables. For example, for n� k ¼ 10
and yk ¼ 3; we have E3k ¼ 0:0064 while E4k ¼ 0:0111: Similarly, the bound E2k ¼

expð�y2
kÞ
Qn�k

t¼1 coshðwktykÞ improves the two previous ones by explicitly taking into
account the weights wkt; t ¼ 1; . . . ; n� k: When the weights are equal, i.e., wkt ¼

1=
ffiffiffiffiffi
n�k

p
; t ¼ 1; . . . ; n� k; the bounds E2k and E3k coincide. In other cases, E2k can

yield substantial improvements over E3k; especially when the data contain a large
outlier. For example, if wkt ! 0; n�k ¼ 10 and yk ¼ 3; the ratio E2k=E3k converges to
0.1933. Finally, the smallest bound E1k � Bkðyk; jX jÞ is obtained by finding the
infimum of the function MkðzÞ ¼ expð�zykÞ

Qn�k
t¼1 coshðwktzÞ for zX0; and can yield

substantial improvement over the previous bounds. The function Bkðy; jX jÞ has the
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following more explicit expression:

Bkðy; jX jÞ ¼ 0 if
Xn�k

t¼1

wktoy,

¼ ð1
2
Þ
n�

k if
Xn�k

t¼1

wkt ¼ y,

¼ expð�z�kyÞ
Yn�k

t¼1

coshðwktz
�
kÞ if

Xn�k

t¼1

wkt4y, ð7Þ

where z�k is the unique positive number that solves the equation

Xn�k

t¼1

wkt½ð1� e�2wktz
�
k Þ=ð1þ e�2wktz

�
k Þ� ¼ y. (8)

It is fairly easy to compute Bkðy; jX jÞ by numerical methods; for further discussion,
see Dufour and Hallin (1992, pp. 315–317).

Since they depend on jX j only through DkðjX jÞ; the two largest bounds E3k and
E4k in (4) also yield simple unconditional bounds: for all y40;

P½rkXyDkðjX jÞ�p expð�y2Þ½coshðy=
ffiffiffiffiffiffiffiffiffiffiffi
n� k
p

Þ�n�kp expð�y2=2Þ. (9)

However, in most practical cases, the weights wkt are known so that the
better bounds E1k and E2k are available: conditional critical values based on
the latter always yield less conservative tests (both conditionally and uncondi-
tionally).
3. Bounds based on moments

The exponential bounds described in Proposition 1 are based on the conditional
moment generating function of rk given jX j: In this section, we give two sets of
bounds based on considering appropriate conditional moments of rk: The first one
applies results from Eaton (1970), Pinelis (1994) and Dufour and Hallin (1993), and
is based on minimizing a truncated third order moment. We denote by jðyÞ ¼
ð2pÞ�1=2 expð�y2=2Þ and FðyÞ the Nð0; 1Þ density and distribution functions, and by
ðyÞþ the positive part of any real number y; i.e., ðyÞþ ¼ maxð0; yÞ:

Proposition 2 (Improved Eaton–Pinelis bounds). Under the assumptions and notations

of Proposition 1, we have

P½rkXy j jX j�pminfBEðyk; n
�
kÞ; 0:5y�2k ; 0:5g:¼B�EPðyk; n

�
kÞ

pminfBEðykÞ; 0:5y�2k ; 0:5g:¼BEPðykÞ, ð10Þ
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a.s., for all y40; where

BEðy;mÞ:¼ð0:5Þ inf
0pcoy

ð0:5Þm
Xm

j¼0

m

j

 !
f c½ðj � ðm=2ÞÞ=ðm=4Þ

1=2
�=ðy� cÞ3

( )
,

(11)

f c:¼½ðjxj � cÞþ�
3; m

j

� �
:¼m!=½j!ðm� jÞ!�; and

BEðyÞ:¼ inf
0pcoy

Z 1
c

z� c

y� c

� �3

jðzÞdz

¼ inf
0pcoy

½jðcÞð2þ c2Þ � ð1� FðcÞÞðc3 þ 3cÞ�=ðy� cÞ3
� �

. ð12Þ

Calculation of the bounds, B�EPðy;mÞ and BEPðyÞ is discussed in Dufour and Hallin
(1993), where the associated (conservative) critical values for standard significance
levels are also reported. It is of interest to note that the bound BEP enjoys an
optimality property in the sense that it is tightest among all bounds based on
expectations of convex functions of a standard normal variable; see Pinelis (1994)
and Dufour and Hallin (1993). Note also that the function BEðy;mÞ is monotonic
increasing in m; i.e., BEðy;mÞpBEðy;mþ 1Þ for y40:

Another related method consists in bounding the tail areas of rk with Chebyshev-
type inequalities. As observed in Dufour and Hallin (1992), such bounds can be quite
tight, especially if they are based on higher-order moments (i.e., moments of order
greater than 2). We summarize these in the following proposition.

Proposition 3 (Generalized Chebyshev bounds). Let the assumptions and notations of

Proposition 1 hold. Then, for any positive even integer p and for any y40;

P½rkXy j jX j�p
Eðr

p
k j jX jÞ

2yp
p

DkðjX jÞ
pE½Y ðn�kÞ

p
�

2yp

p
ðp� 1Þðp� 3Þ � � � 3 � 1

2yp

� 	
DkðjX jÞ

p
ð13Þ

and

P½rkXy j jX j�p
ðp�k � 1Þðp�k � 3Þ � � � 3 � 1

2yp�
k

� 	
DkðjX jÞ

p�
k (14)

a.s., where Y ðmÞ refers to a Bin ðm; 0:5Þ random variable, p�k ¼ maxf2; p̄kg and p̄k is the

largest even integer such that p̄ko1þ y2
k:

To implement the first bound in (13), we need the conditional moments of rk given
jX j: These can be established easily from (24), (25) and (26) in the proof of
Proposition 1 and equations (3.2)–(3.6) in Dufour and Hallin (1992); the appropriate
expressions are given in Appendix B. Even moments E½r

p
k j jX j� of order greater than

12 can be established by analogous methods, but the algebra is correspondingly more
involved. These moments as well as higher order ones can also be established by
using symbolic manipulation programs. The standardized binomial moments can be
computed up to any desired order from formulae (3.8) and (3.9) in Dufour and
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Hallin (1992), and so the two larger bounds in (13) above can be obtained easily for
any value of p: Clearly, the bounds in (13) can be computed for several values of p

and the minimum of these bounds again provides a valid bound. The bound (14) is
the explicit solution of this minimization process (over all even values of pX2) based
on the third bound in (13), which is based on the moments of a Nð0; 1Þ distribution.
4. Berry–Esséen–Zolotarev bounds

The results of the two previous sections yield upper bounds on the tail areas of
autocorrelation coefficients under the null hypothesis of independence, and they can
therefore be used to check whether we can safely reject the null hypothesis at a given
level under relatively weak nonparametric assumptions. Further, these bounds are
reasonably tight only when y is not too small (say, y41:5). In many cases, it would
also be helpful to have a lower bound which could be used to decide whether an
autocorrelation coefficient unambiguously lies in the acceptance region of the
(conditional) test based on rk:

Unfortunately, it appears much more difficult to obtain lower bounds similar to
the upper bounds previously given. In order to obtain such lower bounds as well as
upper bounds whose behavior may be more satisfactory for lower values of y; we will
consider bounds of the Berry–Esséen type. More precisely, in the following
proposition, we combine results of van Beek (1972) and Zolotarev (1965) to
bound the difference between the conditional distribution of rk and the standard
normal one.

Proposition 4 (Berry–Esséen–Zolotarev bounds). Under the assumptions and nota-

tions of Proposition 1 and provided X tX tþka0 for at least one t ð1ptpn� kÞ; we have

jP½rkXy j jX j� � F½y=DkðjX jÞ�j

pD:¼min 0:7975
Xn

t¼1

jwktj
3; 0:366145

Xn

t¼1

jwktj
3

 !1=4
8<
:

9=
;

p0:366145 ð15Þ

for all y, where FðyÞ denotes the N(0,1) distribution function.

It is clear that inequality (15) can provide both upper and lower bounds on the tail
areas of rk:

BEL:¼1� F½y=DkðjX jÞ� � DpP½rkXy j jX j�

p1� F½y=DkðjX jÞ� þ D:¼BEU a:s. ð16Þ

This implies that the normal approximation is good when
P
jwktj

3 is small. It also
follows from (15) that the conditional distribution of rk given jX j—hence also its
unconditional distribution—converges to a normal distribution when

P
jwktj

3 goes
to zero. But, of course, the main interest of (15) lies in the fact that it is an
operational finite-sample approximation result, not a convergence theorem.
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5. Simulation experiment

In order to provide some evidence on the size and power of the proposed bounds,
we considered an AR(1) process of the form

X t ¼ jX t�1 þ ut; t ¼ 1; . . . n, (17)

ut ¼ dtvt; t ¼ 1; . . . ; n, (18)

where the variables vt; t ¼ 1; . . . ; n; are i.i.d., the dt’s are scale parameters which
determine the form of the heteroskedasticity, and X t ¼ 0 (fixed). Two types of
distributions for vt were considered:

ðGÞ vt �
i:i:d:

Nð0; 1Þ; t ¼ 1; . . . ; n, (19)

ðCÞ vt �
i:i:d:

Cauchy; t ¼ 1; . . . ; n. (20)

For the error heterogeneity, the patterns described in Table 1 were studied.
Results of our simulation are reported in Tables 2–4. In these tables, the statistics
jtðr1Þj; j~tðr1Þj; jtðr̂kÞj and jt̄ðr̂kÞj represent four alternative ways of standardizing
traditional (parametric) autocorrelation coefficients, while E11 is the best exponential
bound. The autocorrelation statistics are:

jtðrkÞj ¼ j
ffiffiffi
n
p

rkj; jt̄ðrkÞj ¼ jrk=skj, (21)

jtðr̂kÞj ¼ j
ffiffiffi
n
p

r̂kj; jt̄ðr̂kÞj ¼ jðr̂k � mkÞ=skj, (22)

where rk is defined in (2),

r̂k ¼
Xn�k

t¼1

ðX t � X̄ ÞðX tþk � X̄ Þ
Xn

t¼1

ðX t � X̄ Þ2

,
(23)
Table 1

Heteroskedasticity patterns studied

Model Type

M1 Homoskedasticity dt ¼ 1 t ¼ 1; . . . ; n
M2 One outlier I dt ¼ 10 if t ¼ n=2

¼ 1 otherwise

M3 One outlier II dt ¼ 100 if t ¼ n=2
¼ 1 otherwise

M4 Exponential I dt ¼ et=10 t ¼ 1; . . . ; n

M5 Exponential II dt ¼ et=2 t ¼ 1; . . . ; n

M6 Two outliers I dt ¼ 10 if t ¼ n
2
or n

2
þ 1

¼ 1 otherwise

M7 Two outliers II dt ¼ 100 if t ¼ n
2
or n

2
þ 1

¼ 1 otherwise

M8 Two outliers III dt ¼ 106 if t ¼ n
2
or n

2
þ 1

¼ 1 otherwise
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Table 2

Empirical levels of serial dependence tests at nominal level a ¼ 0:05

Error distribution (vt) N(0, 1 ) Cauchy

Heteroskedasticity type M1 M2 M5 M7 M8 M1 M2 M5 M7 M8

Sample size: n ¼ 30 Asymptotic tests and bounds

jtðr1Þj 3.90 1.67 33.60 49.46 51.32 2.47 2.43 18.68 23.44 34.36

j~tðr1Þj 4.96 2.20 36.17 52.26 54.42 2.95 2.88 20.34 25.86 36.92

jtðr̂kÞj 4.22 1.91 31.78 47.29 49.11 2.43 2.32 17.58 21.91 32.69

jt̄ðr̂kÞj 4.65 2.17 34.45 49.90 51.95 2.88 2.62 19.15 23.93 34.90

E11 0.95 0.87 2.28 0.86 0.00 1.10 1.33 2.84 1.68 0.01

Best bound 1.11 1.00 2.28 0.87 0.00 1.16 1.36 2.84 1.68 0.01

Tests based on Imhof critical values

jtðr1Þj 5.09 2.30 36.59 52.75 54.88 3.04 2.96 20.77 26.34 37.30

j~tðr1Þj 5.45 2.49 37.39 53.71 55.65 3.21 3.17 21.41 27.13 37.97

jtðr̂kÞj 5.57 2.53 35.01 50.98 52.37 2.95 3.10 19.91 24.78 35.58

jt̄ðr̂kÞj 5.20 2.47 35.74 51.34 53.54 3.08 2.82 20.05 25.48 36.12

Test based on global size correction

jtðr1Þj 0.02 0.00 5.07 0.00 0.00 0.03 0.00 1.73 0.12 0.00

j~tðr1Þj 0.02 0.00 5.07 0.00 0.00 0.03 0.00 1.73 0.12 0.00

jtðr̂kÞj 0.02 0.00 4.86 0.00 0.00 0.02 0.00 1.60 0.12 0.00

jt̄ðr̂kÞj 0.03 0.00 5.10 0.00 0.00 0.02 0.01 1.74 0.18 0.00

Tests based on model-specific size correction

jtðr1Þj 4.86 5.01 5.07 5.10 5.30 5.17 5.15 5.24 4.94 5.01

j~tðr1Þj 4.86 5.01 5.07 5.10 5.30 5.17 5.15 5.24 4.94 5.01

jtðr̂kÞj 4.80 4.73 4.86 4.90 5.17 5.15 5.23 5.35 5.22 4.87

jt̄ðr̂kÞj 4.60 4.93 5.10 5.29 4.77 5.11 5.04 5.22 5.10 5.28

Sample size: n ¼ 60 Asymptotic tests and bounds

jtðr1Þj 4.20 2.83 50.90 65.69 66.21 2.88 2.92 30.90 30.08 48.90

j~tðr1Þj 4.89 3.22 51.92 66.58 67.12 3.07 3.09 31.61 30.75 49.77

jtðr̂kÞj 4.24 2.81 49.98 65.08 65.57 2.84 2.88 30.30 29.55 48.09

jt̄ðr̂kÞj 4.77 3.05 51.27 65.82 66.49 2.95 3.13 31.19 30.39 49.12

E11 0.72 0.91 2.31 0.62 0.00 1.15 1.08 2.95 1.45 0.00

Best bound 1.01 1.21 2.31 0.62 0.00 1.24 1.10 2.95 1.45 0.00

Tests based on Imhof critical values

jtðr1Þj 4.99 3.29 52.05 66.69 67.23 3.12 3.12 31.75 30.90 49.87

j~tðr1Þj 5.20 3.48 52.33 66.96 67.59 3.21 3.19 31.93 31.12 50.17

jtðr̂kÞj 5.12 3.34 51.29 66.19 66.70 3.09 3.09 31.25 30.51 49.13

jt̄ðr̂kÞj 4.95 3.16 51.85 66.29 66.91 3.07 3.20 31.57 30.81 49.55

Tests based on global size correction

jtðr1Þj 0.00 0.00 5.09 0.00 0.00 0.00 0.00 1.86 0.08 0.00

j~tðr1Þj 0.00 0.00 5.09 0.00 0.00 0.00 0.00 1.86 0.08 0.00

jtðr̂kÞj 0.00 0.00 5.20 0.00 0.00 0.00 0.00 1.88 0.08 0.00

jt̄ðr̂kÞj 0.00 0.00 5.03 0.00 0.00 0.00 0.00 1.88 0.07 0.00

Tests based on model-specific size correction

jtðr1Þj 4.72 5.26 5.07 5.19 4.83 5.12 4.99 5.42 4.83 4.65

j~tðr1Þj 4.72 5.26 5.07 5.19 4.83 5.12 4.99 5.42 4.83 4.65

jtðr̂kÞj 4.59 5.09 5.11 5.34 4.96 5.03 4.85 5.35 4.85 5.03

jt̄ðr̂kÞj 4.67 5.28 5.07 5.16 4.95 5.07 4.98 5.35 4.61 4.93

J.-M. Dufour et al. / Journal of Econometrics 130 (2006) 123–142132
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Table 3

Empirical powers of serial dependence tests at level a ¼ 0:05 under X t ¼ 0:2X t�1 þ ut

Error distribution (vt) N(0,1) Cauchy

TestnModel M1 M2 M5 M7 M8 M1 M2 M5 M7 M8

Sample size: n ¼ 30 Asymptotic tests and bounds

E11 4.81 7.15 3.51 19.51 48.06 13.37 14.59 7.29 19.78 44.49

Best bound 5.66 7.54 3.51 19.52 48.06 13.59 14.72 7.29 19.78 44.49

Tests based on global size correction

jtðr1Þj 0.22 0.02 7.77 0.19 0.00 0.08 0.11 2.98 0.66 0.00

j~tðr1Þj 0.22 0.02 7.77 0.19 0.00 0.08 0.11 2.98 0.66 0.00

jtðr̂kÞj 0.12 0.02 6.61 0.03 0.00 0.03 0.08 2.36 0.25 0.00

jt̄ðr̂kÞj 0.37 0.05 8.57 0.60 0.00 0.10 0.13 3.48 0.83 0.00

Tests based on model-specific size correction

jtðr1Þj 18.71 23.05 7.77 24.77 25.27 16.03 16.16 8.59 14.08 16.75

j~tðr1Þj 18.71 23.05 7.77 24.77 25.27 16.03 16.16 8.59 14.08 16.75

jtðr̂kÞj 12.36 13.78 6.61 20.38 20.32 10.95 10.72 7.37 11.67 13.63

jt̄ðr̂kÞj 17.73 21.54 8.57 24.93 25.26 15.71 15.91 8.99 14.90 17.42

Sample size: n ¼ 60 Asymptotic tests and bounds

E11 11.54 13.92 3.54 21.85 49.02 26.04 25.75 7.40 25.78 44.41

Best bound 13.71 15.26 3.55 21.85 49.02 26.32 26.09 7.40 25.79 44.41

Tests based on global size correction

jtðr1Þj 0.00 0.00 8.00 0.11 0.00 0.01 0.00 3.16 0.33 0.00

j~tðr1Þj 0.00 0.00 8.00 0.11 0.00 0.01 0.00 3.16 0.33 0.00

jtðr̂kÞj 0.00 0.00 7.54 0.00 0.00 0.00 0.00 2.88 0.25 0.00

jt̄ðr̂kÞj 0.01 0.00 8.33 0.20 0.00 0.02 0.00 3.37 0.36 0.00

Tests based on model-specific size correction

jtðr1Þj 33.22 41.38 8.00 24.79 25.42 43.25 42.27 8.66 12.34 17.18

j~tðr1Þj 33.22 41.38 8.00 24.79 25.42 43.25 42.27 8.66 12.34 17.18

jtðr̂kÞj 27.21 33.31 7.54 22.97 23.38 29.29 27.99 8.14 11.11 16.55

jt̄ðr̂kÞj 32.26 39.92 8.33 25.20 25.75 41.73 41.69 9.00 12.50 18.09
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is the usual ‘‘centered’’ autocorrelation coefficient, while mk ¼ �ðn� kÞ=½nðnþ 1Þ�
and s2k ¼ ðn� kÞ=½nðnþ 2Þ� are the adjusted mean and variance suggested in Dufour
and Roy (1985) for the case of a sequence of i.i.d. observations.

For each of the above parametric statistics, we also report the results of tests based
on four ways of computing critical values: (1) standard asymptotic normal critical
values; (2) critical points based on the Imhof algorithm assuming the observations
are i.i.d. Gaussian (the Imhof critical values were also cross-checked by simulation);
(3) critical values obtained by simulation under each specific distribution and
heteroskedasticity pattern considered; (4) critical values based on the largest critical
point that we found over the set of distributions and heteroskedasticity patterns
considered—i.e. models Ml–M8 with vt following a Nð0; 1Þ or a Cauchy
distribution—which are all included in the null hypothesis of independence. Of
course, the second method is the best choice under the assumptions made by the
Imhof algorithm, but will not control the level (in the sense of ensuring that the
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Table 4

Empirical powers of serial dependence tests at level a ¼ 0:05 under X t ¼ 0:9X t�1 þ ut

Error distribution (vt) N(0,1) Cauchy

TestnModel M1 M2 M5 M7 M8 M1 M2 M5 M7 M8

Sample size: n ¼ 30 Asymptotic tests and bounds

E11 97.94 97.95 19.45 83.83 84.70 94.39 94.67 35.89 90.42 89.65

Best bound 98.20 98.18 19.45 84.21 85.06 94.55 94.92 35.95 90.81 89.97

Tests based on global size correction

jtðr1Þj 92.69 97.09 40.57 79.63 79.43 93.46 94.40 56.06 88.42 86.01

j~tðr1Þj 92.69 97.09 40.57 79.63 79.43 93.46 94.40 56.06 88.42 86.01

jtðr̂kÞj 80.15 90.72 40.76 71.37 71.49 86.36 87.83 54.99 81.97 80.07

jt̄ðr̂kÞj 85.21 93.59 47.30 73.70 73.76 89.35 90.57 61.06 84.20 81.78

Tests based on model-specific size correction

jtðr1Þj 99.65 99.95 40.57 84.29 83.85 98.99 99.09 71.44 92.65 88.98

j~tðr1Þj 99.65 99.95 40.57 84.29 83.85 98.99 99.09 71.44 92.65 88.98

jtðr̂kÞj 98.52 99.71 40.76 77.68 77.46 98.28 98.41 71.21 88.70 84.87

jt̄ðr̂kÞj 99.06 99.84 47.30 79.27 79.06 98.59 98.64 77.24 89.86 85.98

Sample size: n ¼ 60 Asymptotic tests and bounds

E11 100 100 18.45 86.29 85.85 99.09 99.15 35.00 96.03 90.32

Best bound 100 100 18.45 86.55 86.23 99.11 99.18 35.10 96.28 90.52

Tests based on global size correction

jtðr1Þj 99.11 99.55 39.31 80.56 80.27 97.93 98.15 55.43 92.95 86.61

j~tðr1Þj 99.11 99.55 39.31 80.56 80.27 97.93 98.15 55.43 92.95 86.61

jtðr̂kÞj 97.54 98.57 40.00 76.78 75.75 97.02 97.44 55.51 90.50 83.31

jt̄ðr̂kÞj 98.11 98.92 42.82 77.46 76.66 97.43 97.68 58.09 91.07 83.98

Tests based on model-specific size correction

jtðr1Þj 100 100 39.31 84.95 84.35 99.68 99.62 70.70 96.31 89.96

j~tðr1Þj 100 100 39.31 84.95 84.35 99.68 99.62 70.70 96.31 89.96

jtðr̂kÞj 100 100 40.00 81.52 81.11 99.58 99.57 70.87 94.98 87.73

jt̄ðr̂kÞj 100 100 42.82 82.35 81.69 99.60 99.59 74.26 95.35 88.13

J.-M. Dufour et al. / Journal of Econometrics 130 (2006) 123–142134
probability of rejecting the null hypothesis of independence is not larger than the
level) in other cases covered by the null hypothesis of independence (e.g., with
heteroskedasticity); for further discussion of the Imhof algorithm, see Imhof (1961),
Koerts and Abrahamse (1969) and Dufour and King (1991). The third method
provides a theoretical benchmark that cannot be achieved in practice, because the
heteroskedasticity pattern is not specified by the null hypothesis of independence.
The fourth method is the one closest to what one would like to do for a distribution-
free test that is robust to non-normality and heteroskedasticity of unknown form,
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based on these statistics. It is not clear, however, that the (marginal) distributions of
these statistics can be bounded in a useful way under the (very wide) null hypothesis
considered by the conditional bounds we propose [for further of discussion of this
point, see Pratt and Gibbons (1981, Chapter 4), Dufour and Hallin (1991, Section 1),
Dufour (2003, Section 4.2)]. We do not have a way of producing provably valid
critical values for these tests. So the ‘‘size-corrected’’ critical values used for the
unconditional tests remain too ‘‘small’’ and the powers presented overestimate the
true power of these procedures for the nonparametric null hypothesis studied.

All tests are performed at the 0.05 nominal level. Sample sizes n ¼ 30; 60 were
considered. Results on empirical frequencies of type I errors (empirical level) appear
in Table 2, while powers for j ¼ 0:2; 0:9 appear in Tables 3–4.1 Size and power
frequencies were evaluated using 10,000 replications. Critical values for the ‘‘size-
corrected’’ tests were obtained out of a preliminary simulation involving 100,000
replications. Most calculations were performed with Fortran 90 programs (Sun
Workshop Compiler Fortran 90 4.2) on a Unix server. Critical values based on the
Imhof algorithm were obtained using the SHAZAM computer program (version 9,
Whistler et al., 2001).

We see from these results that the bounds constitute the only method that allows
one to control the level of the test for all the patterns considered, in the sense that the
probability of type I error is never larger than the nominal level 0.05 of the test. By
contrast, the probability of type I error can get as large as 0.54 for n ¼ 30 and 0.65
for n ¼ 60 in the limited number cases considered in this experiment, so the size of
the tests considered is at least as large as these numbers, even though the nominal
size is 0.05.2 In particular, tests based on exact critical values designed for i.i.d.
Gaussian observations behave very poorly in such circumstances.

Once standard tests are corrected for size, the bounds can lead to substantial
power gains. This holds despite the fact that our ‘‘size corrections’’ are incomplete,
so the powers of the tests that are not based on bounds are overestimated. The
adjustments required to correct the size of these procedures are simply too ‘‘large’’ to
yield useful tests of the nonparametric hypothesis considered. This shows clearly that
the distribution-free bounds presented in this paper can at least provide a useful
check on the reliability of serial dependence tests that are not provably distribution-
free.

We also observed that the tightest exponential bound E11 ¼ B1ðy1; jX jÞ yields the
best results in terms of power (for a level of 0.05), with a performance that is very
close to the one provided by the minimum value over all the bounds (which may be
supplied by a different bound, depending on the sample).
1More complete results are available from the discussion paper version of this article (Dufour et al.,

2004). In particular, these include results for three sample sizes (n ¼ 30; 60; 100) and a larger set of values

of the autoregressive coefficient (j ¼ 0:2; 0:3; 0:4; 0:5; 0:6; 0:8; 0:9).
2Under a sufficiently important heteroskedasticity, it is not clear that traditional test statistics have the

usual asymptotic normal distribution, so there is no presumption that standard asymptotic theory will

work well here or exhibit convergence. This can be contrasted with the fact that the conditional

distribution-free tests proposed here are provably exact under the same circumstances.



ARTICLE IN PRESS

J.-M. Dufour et al. / Journal of Econometrics 130 (2006) 123–142136
6. Application to commercial paper rate

In this section, we illustrate how the bounds derived above can be used by
applying them to U.S. data on interest rates. We will study the autocorrelation
structure of the first and second differences of the logarithm of the commercial paper
rate [denoted by lnðrtÞ] from 1951 to 1983 (quarterly, 132 observations). The source
of the data is Balke and Gordon (1986, pp. 789–808).

For these two series, we report in Tables 5 and 6 the usual centered version of
traditional autocorrelations r̂k [defined in (23)] and the uncentered autocorrelations
rk [in (2)], for k ¼ 1; . . . ; 20: Since both series have means very close to zero, there is
very little difference between the two sets of autocorrelation coefficients (see also the
t-statistics reported in the tables). Even though we are mostly interested by
the minimal upper bound on the p-value for testing independence, we also report the
individual bounds for the sake of comparison (but one would not normally report all
this information). The bounds reported are for two-sided tests, i.e., we compute
bounds on P½jrkjXy j jX j� ¼ 2P½rkXjyj j jX j� at y ¼ r̂k (observed value of rk). The
upper bounds on P½rkXjyj j jX j� computed are based on the four exponential bounds
E1kpE2kpE3kpE4k from (4), the improved Eaton–Pinelis-type bounds B�EP and
BEP from (10), Chebyshev bounds based on the exact conditional even moments of
rk; binomial moments and normal moments as given in (13)–(14), and the
Berry–Esséen–Zolotarev type bound BEU given by (16). The Chebyshev bound
(C) based on the exact moments of rk is the minimal value yielded by the six first even
moments ðp ¼ 2; 4; . . . ; 12Þ; the one based on the binomial moments is the best over
the first 15 even moments ðp ¼ 2; 4; . . . ; 30Þ; while the normal moment bound is
based on (14). We also report the Berry–Esséen lower bound obtained from (16). All
the upper bounds we consider (except B�EP and BEP) can take values larger than 1.0:
since a probability cannot be greater than 1.0, any one of these bounds can be
improved by taking the minimum given by the bound the 1.0. Consequently, when
an upper bound exceeds one, we report 1.0 in the table. Similarly, when the lower
bound is less than zero, we report 0.0 in the table.

From the results in Table 5, we see that the series X t ¼ ð1� BÞ lnðrtÞ ¼ lnðrtÞ �

lnðrt�1Þ exhibits four autocorrelations rk (at lags k ¼ 1; 2; 6; 7) whose absolute values
exceed two asymptotic standard errors (jrkjX2=

ffiffiffi
n
p
¼ 2=

ffiffiffiffiffiffiffiffi
131
p

¼ 0:175). Among
these, three ðk ¼ 1; 6; 7Þ are clearly significant at level 0.05 under the assumption that
X 1; . . . ;X n have distributions symmetric about zero. It is also of interest to note that
the autocorrelations at lags k ¼ 3; 5; 8; 9; 12; 13; 14; 18 are clearly not significant at
level 0.05. Depending on cases, the best upper bound is obtained by using either a
Chebyshev (C), Eaton-type (B�EP) or Berry–Esséen bound.

The autocorrelations for the second differences X t ¼ ð1� BÞ2 lnðrtÞ in Table 6
exhibit only one autocorrelation (at k ¼ 2) whose absolute value is greater than two
asymptotic standard errors (jrkjX2=

ffiffiffi
n
p
¼ 2=

ffiffiffiffiffiffiffiffi
130
p

¼ 0:175). The nonparametric
upper bound on the p-value for jr2j indicates that this is significant even for a level as
low as 0.00002; the best upper bound is given here by the exponential bound E1: In
this case, all the upper bounds (except the Berry–Esséen one) indicate that this is
significant at level 0.005. The Berry–Esséen lower bound indicates that the
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autocorrelations at lags k ¼ 5; 12; 13 are clearly not significant at level 0.05. Overall
the second differences of lnðrtÞ seem to have a simpler autocorrelation structure than
the first differences ð1� BÞ lnðrtÞ:
7. Conclusion

In this paper, we suggested several ways of bounding the distribution of serial
correlation coefficients, under a nonparametric null hypothesis of serial indepen-
dence, allowing for both discrete and continuous distributions as well as general
heterogeneity of unknown form. As required in the case of a sufficiently general
heteroskedasticity, the proposed technique is based on the conditional distribution of
the autocorrelations given the absolute values of the observations, which is then
bounded by considering the distribution of the signs. The bounds proposed are valid
for any sample size and do not rely on asymptotic approximations. In order to do
that we assumed that the observations have symmetric (nonidentical) distributions
with respect to known medians.

These are, of course, real restrictions. But minimal distributional assumptions are
needed to get testable hypotheses. The symmetry assumption is quite common in
econometrics and statistics and holds for many important distributional families
(e.g., Gaussian distributions, Cauchy distributions, a wide class a stable laws, etc.)
Relaxing it will require the introduction of alternative assumptions, such as i.i.d.
observations (which precludes heteroskedasticity); see Dufour and Roy (1985) and
Hallin and Puri (1992). Of course, which set of restrictions is most appropriate will
depend on the context.

The assumption that the observations have known medians can be relaxed more
easily. For example, if we assume that the observations have the same median, it is
possible to obtain an exact confidence interval for this unknown median (which plays
the role of a nuisance parameter), for example by inverting a sign test or the
nonparametric t test described in Dufour and Hallin (1991). One can then test serial
independence by using a two-stage confidence procedure similar to the ones
proposed in Dufour (1990), Campbell and Dufour (1997) and Dufour and Kiviet
(1998) in other contexts. Designing such a procedure, or alternative ones that would
deal such nuisance parameters, goes beyond the scope of the present article and will
be considered in a subsequent paper.
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Appendix A. Proofs
Proof of Proposition 1. Let Zkt ¼ X tX tþk; t ¼ 1; . . . ; n� k; and let sgnðxÞ be the sign
function: sgnðxÞ ¼ �1 if xo0; 0 if x ¼ 0; and 1 if x40: Then we can write

rk ¼ DkðjX jÞ
Xn�k

t¼1

wktSkt ¼ DkðjX jÞRk, (24)

where Skt ¼ sgnðZktÞ; t ¼ 1; . . . ; n� k;Rk ¼
Pn�k

t¼1 wktSkt; and
P

w2
kt ¼ 1: When

Zk1 ¼ � � � ¼ Zk;n�k ¼ 0; we have rk ¼ DkðjX jÞ ¼ 0; so that P½rkXy j jX j� ¼ 0; a.s.,
and the result holds trivially. We now suppose that Zkta0 for at least one t: Let
AkðjX jÞ ¼ ft : jX tja0; 1ptpn� kg and BkðjX jÞ ¼ ft : jX tX tþkja0; 1ptpn� kg:
Clearly, t 2 BkðjX jÞ if and only if t 2 AkðjX jÞ and tþ k 2 AkðjX jÞ; hence

Rk ¼
Xn�k

t¼1

wktSkt ¼
X

t2BkðjX jÞ

wktSkt. (25)

By the independence of X 1; . . . ;X n and by the symmetry assumption, the vari-
ables in the set fsgnðX tÞ : t 2 AkðjX jÞg are independent conditional on jX j;
with P½sgnðX tÞ ¼ �1 j jX j� ¼ P½sgnðX tÞ ¼ 1 j jX j� ¼ 0:5: Further, since sgnðZktÞ ¼

sgnðX tÞsgnðX tþkÞ; it is easy to see that the variables in the set fSkt : t 2 BkðjX jÞg are
independent conditional on jX j with

P½Skt ¼ �1 j jX j� ¼ P½Skt ¼ 1 j jX j� ¼ 0:5; (26)

see Dufour (1981). It is clear from (24)–(26) that the conditional distribution of rk

given jX j is symmetric about zero. Further, using Markov’s inequality and observing
that coshðwktzÞ ¼ coshð0Þ ¼ 1 for teBkðjX jÞ; we have

P½RkXy j jX j�pE½expðzRk j jX jÞ�= expðzyÞ ¼
Yn�k

t¼1

coshðwktzÞ= expðzyÞ (27)

for all zX0 and for all y: Consequently, for all y40;

P½RkXy j jX j�p inf
zX0

expð�zyÞ
Yn�k

t¼1

coshðwktzÞ

( )
p expð�y2Þ

Yn�k

t¼1

coshðwktyÞ

¼ expð�y2Þ
Y

t2BkðjX jÞ

coshðwktyÞp expð�y2Þ coshðy=
ffiffiffiffiffi
n�k

p
Þ

� �n�
k

o expð�y2Þ exp½ðy=
ffiffiffiffiffi
n�k

p
Þ
2=2�

� �n�
k ¼ expð�y2=2Þ
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where the second inequality is obtained by taking z ¼ y in (27), the third one follows
from Corollary 1 and Example 2 of Eaton (1970), and the last one is obtained by
noting that coshðxÞo expðx2=2Þ for x40 (Edelman, 1986). Inequality (4) follows
from (27) on observing that rk ¼ DkðjX jÞRk: &

Proof of Proposition 2. When X tX tþk ¼ 0; for t ¼ 1; . . . ; n� k; we have rk ¼ 0 and
(10) clearly holds. When X tX tþka0 for some t; the result follows from (24) to (26),
and then by applying Proposition 1 from Dufour and Hallin (1993) to Rk in
(25). &

Proof of Proposition 3. When X tX tþk ¼ 0; for t ¼ 1; . . . ; n� k; we have rk ¼ 0;
and (13)–(14) clearly hold. Otherwise, the result follows from (24) to (26), and
Proposition 2 in Dufour and Hallin (1992). &

Proof of Proposition 4. The result is immediate from (24) to (26) and Proposition 3
from Dufour and Hallin (1992). &
Appendix B. Conditional moments of the autocorrelations

The conditional moments Eðr
p
k j jX jÞ in (13) can be computed by noting that

Eðr
p
k j jX jÞ ¼ DkðjX jÞ

pEðR
p
k j jX jÞ, (28)

where, provided DkðjX jÞa0 (otherwise, rk ¼ 0), EðR2
k j jX jÞ ¼ 1 and, for p ¼

4; 6; . . . ; 12;EðRp
k j jX jÞ is given by the following formulae: setting W kp ¼

Pn�k
t¼1 w

p
kt;

EðR4
k j jX jÞ ¼ 3� 2W k4, (29)

EðR6
k j jX jÞ ¼ 15� 30W k4 þ 16W k6, (30)

EðR8
k j jX jÞ ¼ 105� 420W k4 þ 140W 2

k4 þ 448W k6 � 272W k8, (31)

EðR10
k j jX jÞ ¼ 945� 6300W k4 þ 6300W 2

k4 þ 10080W k6 � 6720W k6W k4

� 12240W k8 þ 7936W k;10, ð32Þ

EðR12
k j jX jÞ ¼ 10395� 103950W k4 þ 207900W 2

k4 � 46200W 3
k4 þ 221760W k6

� 443520W k6W k4 þ 118272W 2
k6 � 403920W k8

þ 269280W k8W k4 þ 523776W k;10 � 353792W k;12. ð33Þ
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