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Abstract

We consider the problem of testing whether the observations X1,..., X, of a time series are
independent with unspecified (possibly nonidentical) distributions symmetric about a common
known median. Various bounds on the distributions of serial correlation coefficients are
proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry—Esséen—
Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to
compute. The performance of the bounds is evaluated and compared with traditional serial

*Corresponding author. Tel.: + 1514343 2400; fax: + 1514343 5831.
E-mail addresses: jean.marie.dufour@umontreal.ca (J.-M. Dufour), abdeljelil.farhat@umontreal.ca
(A. Farhat), mhallin@ulb.ac.be (M. Hallin).
URL: http://www.fas.umontreal.ca/SCECO/Dufour.
!Canada Research Chair in Econometrics, CIRANO, CIREQ, and Département de sciences
économiques, Université de Montréal.

0304-4076/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2005.01.034


www.elsevier.com/locate/econbase

124 J.-M. Dufour et al. | Journal of Econometrics 130 (2006) 123—142

dependence tests in a simulation experiment. The procedures proposed are applied to U.S.
data on interest rates (commercial paper rate).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let X1, X»,..., X, be a time series of length n. In many situations, it is of interest
to test whether the X,’s are independent against an alternative of serial dependence,
say, at lag k (k>=1). If under the null hypothesis the observations are assumed to be
identically distributed with known mean g, a natural test consists in rejecting the null
hypothesis for large or small values of the autocorrelation coefficient

n—k n
= (X, — WXk — ) / > (X —w? (1)
1 t=1

1=

where 1<k<n— 1. Under general regularity conditions, the distribution of ry is
approximately normal with mean zero and variance n~'; see Anderson (1971,
Chapter 8) or Brockwell and Davis (1991, Chapter 7).

When the observations are not identically distributed or their distributions are
heavy-tailed, such a procedure can clearly be inappropriate. In this paper, we study
the null hypothesis Hy under which the observations X,..., X, are independent but
possibly nonidentically distributed, with distributions symmetric about known

medians u,. No assumption about the existence of the moments of Xi,..., X, is
made, and the distribution of the observations can be discrete. Since X; can be
replaced by X, — u,, we can, without loss of generality, assume that y; =--- =y, =

0. Consequently, we shall henceforth set u, =0,r=1,...,n.

The hypothesis Hy is “nonparametric” in the sense that no finite-dimensional
parameter vector can determine entirely the probability distribution of the
observations X, X»,..., X,. Following standard terminology [see Lehmann (1986,
Sections 3.1 and 3.5)], a test of Hy has level o if the probability of rejecting Hy is not
greater than o under any distribution of X = (X,..., X},) included in Hy (0<a<1).
If moreover the supremum of the rejection probabilities over Hy is equal to «, one
says that the test has size a. Since Hy covers a wide spectrum of probability
distributions and because of the ‘“‘parametric origin” of the coefficient ry, the
distribution of r; under Hy depends on the form of the distributions of the
observations. Without additional assumptions, it is unknown. Consequently, no
similar critical region of the type |ri|>c (where ¢ is a nonstochastic critical point
which depends on the level of the test) does exist: i.e., for 0 <c<1, the probability of
the event |ri| > ¢ is not constant over the set of data generating processes (DGP) in
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Hj, and finding a valid critical value involves bounding the distribution of r; over Hy
or considering data-dependent critical regions for r¢. In particular, there is strictly no
guarantee that the actual sizes of tests based on the asymptotic (normal)
distributions of r; will be less than or equal to their nominal level (as tests of Hy)
in finite samples. The same will hold a fortiori for critical values obtained under
parametric assumptions, e.g., the assumption that Xy,..., X, are independent and
identically distributed (i.i.d.) random variables according to a N(0, ¢?) distribution
[in which case exact critical values may be computed using Imhof’s algorithm]: such
critical values—though they belong to daily practice—simply do not yield valid tests
of the nonparametric hypothesis Hj.

The objective of this paper is to develop finite-sample (a-level) tests based on ry for
the nonparametric null hypothesis Hy. In other words, we need to ensure that the
probability of rejecting Hy is not greater than o under any DGP in Hy. This problem
is quite distinct from the one where one tries to approximate the distribution of ry
under some specific distribution included in Hy (like the i.i.d. Gaussian model).
Following a classical nonparametric technique, we shall do this here by using an
appropriate conditioning. When X1, X, ..., X, are absolutely continuous, the vector
of absolute values |X| = (|X1],...,|X,]) is a complete sufficient statistic for Hy.
Further, classical arguments of similarity and Neyman structure lead one to consider
tests that are conditional with respect to the complete sufficient statistic |X|; see
Lehmann (1986, Chapter 4). Indeed, conditioning on | X| is a necessary requirement
to obtain a valid test under conditions of general heterogeneity (heteroskedasticity);
see Lehmann and Stein (1949), Pratt and Gibbons (1981, Section 5.10), Dufour and
Hallin (1991, Section 1), and Dufour (2003, Section 4.2). The conditional
distribution of X = (X, X»,...,X,) given | X| is then determined by the distribution
of the signs of X,...,X,. Since, under Hy, the signs are independent symmetric
Bernoulli variables, the conditional distribution of r; (given the vector of absolute
values | X|) may in principle be computed, e.g., by enumeration. In practice, however,
the conditional distribution of r; depends on each specific sample, because it is a
function of |X|, and so finding critical values may be difficult. This problem is also
met in the well-known case of permutation f-tests; see Pratt and Gibbons (1981,
Chapter 4).

For the problem of testing Hy against location-shift alternatives, simple bounds
for the conditional and unconditional distributions of the z-statistic were provided in
Edelman (1986, 1990) and Dufour and Hallin (1991, 1993); similar bounds for
general linear signed rank statistics have also been proposed in Dufour and Hallin
(1992). Beyond the important advantage of exactness for any sample size, extensive
comparisons in Dufour and Hallin (1991, 1992, 1993) indicate that the bounds
studied (exponential, Chebyshev-type, Eaton-type, Berry—Esséen) can be surpris-
ingly tight, especially if one takes the minimum of the various bounds.

In this paper, we give analogous results for tests of Hy based on r; against serial
dependence alternatives. Four types of bounds are presented: (1) exponential bounds
(Proposition 1); (2) improved Eaton bounds (Proposition 2); (3) Chebyshev-type
bounds (Proposition 3); (4) Berry—Esséen—Zolotarev bounds (Proposition 4). The
exponential bounds are based on the conditional moment generating function of ry
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(given |X|), the improved Eaton and Chebyshev-type bounds on conditional
moments of r; (a truncated third moment in the case of the Eaton bound), while
the Berry—Esséen—Zolotarev bound is based on the normal distribution function.
The exponential, Eaton, Chebyshev and Berry—Esséen bounds extend to the case
of autocorrelation coefficients the bounds proposed in Dufour and Hallin (1991,
1992, 1993).

All these bounds are exact in finite samples and simple to compute. They are
applicable despite the presence of general forms of nonnormality and hetero-
skedasticity (provided the symmetry hypothesis holds). In particular, no assumption
on the existence of moments is required, and the variables considered may have
continuous or discrete distributions. None of the bounds given uniformly dominates
the others. While the three first classes of bounds are especially useful to obtain
upper bounds for small tail areas, the Berry—Esséen bounds can be tighter for larger
tail areas (i.e., tails associated with points that are closer to the center of the
distribution) and yield lower bounds on tail areas as well. Conservative conditional
(given |X|) as well as unconditional conservative p-values, or critical points, for tests
based on r; can be obtained from any one of these bounds. Since all the bounds are
simple to compute, the obvious strategy here is to take the smallest p-value yielded
by the different bounds (or, equivalently, the tightest critical point). Such p-values
provide a useful nonparametric check on the significance of tests based on
autocorrelation coefficients.

The exponential bounds are described in Section 2, the Eaton and Chebyshev
bounds are given in Section 3, while the Berry—Esséen bounds are derived in
Section 4. In Section 5, simulation results on the performance of the bounds are
presented. In Section 6, we illustrate the use of the bounds by applying them to data
on commercial paper interest rates in the U.S. We conclude in Section 7.

2. Exponential bounds

In the following proposition, we derive exponential bounds for the tail areas of the
conditional distribution of r given | X'| under the null hypothesis that X,..., X, are
independent with distributions symmetric about zero. The notation a.s. means

almost surely, while the symbol “:=" represents a definition. The proofs of the
propositions appear in Appendix A.

Proposition 1 (Exponential bounds). Let X1,..., X, be independent random variables
with distributions symmetric about zero, |X| = (|X1|,...,1X.|), and

n—k n
I’kIZZ XtXH—k/Z X?, I<k<sn-—1, (2)
1= =

n—k 1/2
wk,::|XtX,+k|/<Z Xf)(f%) , t=1,...,n—k, (3)
=1
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where we use the convention 0/0 = 0. Then the conditional distribution of 1y given | X|
is symmetric about zero and

n—k
Plre=>y |1 X11<Bie(yy, IX )< exp(—y7) [ | cosh(wiryy)

t=1

< exp(—yp)lcosh(y, //m)]" < exp(—y; /2) 4

a.s., for all y>0 and 1<k<n—1, where y,=y/Di(|X|), cosh(x)=(e* +e7)/2,
np=card({t : | X, X 41| #0,1<t<n — k}) is the number of products X, Xy different
from zero,

n—k 1/2 n
DXy (z Yx ) / (z Xf), ©
=1

n—k
Bi(y,1X|)= gg{exp(—zy) 11 cosh(w,z)} (6)

t=1

and the four bounds in (4) are set equal to zero when Di(]X|) = 0.

From the symmetry of the conditional distribution of rg, it is clear that
Pliril=zy | 1X|] = 2P[re =y | | X|] = 2P[r« < — y | |X|] a.s., so that (4) can also be used
to bound P[r; < — y] and P[|r¢| =y | | X|] for any y>0. In (4), four bounds on the tail
areas P[ry=y||X]] are given. Denote them by E; < Eoy < E3<Ey4 in ascending
order. These bounds are increasingly looser, but the larger ones are ecasier to
compute. In particular, Ey, E3; and E4; only require information about the second
empirical moments of the sample (r; and . X?), which may be useful when the
complete observation vector X = (X1,...,X,) is not available to an investigator.
The exponential bound Ey; = exp(—y,zC /2) is similar to a bound given by Edelman
(1986) and Efron (1969) for the case of ¢-statistics; for an earlier related result, see
also Hoeffding (1963). In contrast with the case of #-statistics, however, this bound
now explicitly depends on |X| through Dy(|X]). The second largest bound Ej; =
exp(—yp)[cosh(y, //mp)I' uniformly improves the latter by explicitly taking into
account the sample size and the lag. It is based on a result given by Eaton (1970) for
linear combinations of independent Bernoulli variables. For example, for n — k = 10
and y, =3, we have E;; = 0.0064 while E4 = 0.0111. Similarly, the bound Ey; =
exp(— yA)Ht . cosh(wyy) improves the two previous ones by explicitly taking into
account the weights wy,, t =1,...,n — k. When the weights are equal, i.e., wy, =
1/\/mg, t=1,....,n—k, the bounds E», and E3; coincide. In other cases, Eo; can
yield substantial improvements over E3j, especially when the data contain a large
outlier. For example, if wi, — 0,nf = 10 and y;, = 3, the ratio E/E3, converges to
0.1933. Finally, the smallest bound Ej; = BkQ/k,|X|) is obtained by finding the
infimum of the function M(z) = exp(— zyk)H, , cosh(wy,z) for z=0, and can yield
substantial improvement over the previous bounds. The function By (y,|X]) has the
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following more explicit expression:
n—k
B, [X) =0 if Y wi<y,
=1
n—k
@iy =,
=1
n—k n

—k
exp(—z;y) H cosh(wyzp) if Z Wit >V, @)

=1 =1

where z} is the unique positive number that solves the equation

n—k
>l = e ) /(1 e ] = . ®)
t=1

It is fairly easy to compute Bi(y, |X|) by numerical methods; for further discussion,
see Dufour and Hallin (1992, pp. 315-317).

Since they depend on |X| only through Dy(|X]), the two largest bounds E3; and
E 4 in (4) also yield simple unconditional bounds: for all y >0,

Plre = yD;(IX ] < exp(—yH)[cosh(y/v/n — k)" * < exp(—y*/2). ©)

However, in most practical cases, the weights wy, are known so that the
better bounds E; and FE,; are available: conditional critical values based on
the latter always yield less conservative tests (both conditionally and uncondi-
tionally).

3. Bounds based on moments

The exponential bounds described in Proposition 1 are based on the conditional
moment generating function of r; given |X|. In this section, we give two sets of
bounds based on considering appropriate conditional moments of r;. The first one
applies results from Eaton (1970), Pinelis (1994) and Dufour and Hallin (1993), and
is based on minimizing a truncated third order moment. We denote by ¢(y) =
(271)_1/2 exp(—y?/2) and @(y) the N(0, 1) density and distribution functions, and by
(»),. the positive part of any real number y, i.e., (), = max(0, y).

Proposition 2 (Improved Eaton—Pinelis bounds). Under the assumptions and notations
of Proposition 1, we have

Plre =y | 1X (1< min{Be(y;;n}), 0.5v: %, 0.5):=Bp(vi; 1})
< min{Bg(yy), 0.5y %, 0.5 :=Bep (1), (10)
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a.s., for all y>0, where

By(y;my=(0.5)  inf }{(o.sr” > <’7>fc[(i — (m/2)/(m/$)"2 (v - c>3},
<ce<y j=0

(a1
Sl = 0,1 () =m/jkom = ). and
00 N3
Bety)=inf | (;_;) 0()dz
= inf {[p(©)2+ &)~ (1 = ) + 30/~ '}, (12)

Calculation of the bounds, Bip(y; m) and Bgp(y) is discussed in Dufour and Hallin
(1993), where the associated (conservative) critical values for standard significance
levels are also reported. It is of interest to note that the bound Bgp enjoys an
optimality property in the sense that it is tightest among all bounds based on
expectations of convex functions of a standard normal variable; see Pinelis (1994)
and Dufour and Hallin (1993). Note also that the function Bg(y;m) is monotonic
increasing in m, i.e., Bg(y;m)< Bg(y;m + 1) for y>0.

Another related method consists in bounding the tail areas of r; with Chebyshev-
type inequalities. As observed in Dufour and Hallin (1992), such bounds can be quite
tight, especially if they are based on higher-order moments (i.e., moments of order
greater than 2). We summarize these in the following proposition.

Proposition 3 (Generalized Chebyshev bounds). Let the assumptions and notations of
Proposition 1 hold. Then, for any positive even integer p and for any y >0,
E(Y11XD _ Di(IXIVELY (1Y

20 2yP

< [O= D22 by (13)
y

Plre=yl1X[]<

and

P — D@ —3)---
27

a.s., where Y (m) refers to a Bin (m,0.5) random variable, pi = max{2,p,} and p, is the

largest even integer such that p, <1+ y,%.

Pire=y | IX]< { 3 I}Dkum)"? (14)

To implement the first bound in (13), we need the conditional moments of r; given
|X|. These can be established easily from (24), (25) and (26) in the proof of
Proposition 1 and equations (3.2)—(3.6) in Dufour and Hallin (1992); the appropriate
expressions are given in Appendix B. Even moments E[/ | |X ] of order greater than
12 can be established by analogous methods, but the algebra is correspondingly more
involved. These moments as well as higher order ones can also be established by
using symbolic manipulation programs. The standardized binomial moments can be
computed up to any desired order from formulae (3.8) and (3.9) in Dufour and
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Hallin (1992), and so the two larger bounds in (13) above can be obtained easily for
any value of p. Clearly, the bounds in (13) can be computed for several values of p
and the minimum of these bounds again provides a valid bound. The bound (14) is
the explicit solution of this minimization process (over all even values of p >2) based
on the third bound in (13), which is based on the moments of a N(0, 1) distribution.

4. Berry—Esséen—Zolotarev bounds

The results of the two previous sections yield upper bounds on the tail areas of
autocorrelation coefficients under the null hypothesis of independence, and they can
therefore be used to check whether we can safely reject the null hypothesis at a given
level under relatively weak nonparametric assumptions. Further, these bounds are
reasonably tight only when y is not too small (say, y > 1.5). In many cases, it would
also be helpful to have a lower bound which could be used to decide whether an
autocorrelation coefficient unambiguously lies in the acceptance region of the
(conditional) test based on ry.

Unfortunately, it appears much more difficult to obtain lower bounds similar to
the upper bounds previously given. In order to obtain such lower bounds as well as
upper bounds whose behavior may be more satisfactory for lower values of y, we will
consider bounds of the Berry—Esséen type. More precisely, in the following
proposition, we combine results of van Beek (1972) and Zolotarev (1965) to
bound the difference between the conditional distribution of r;, and the standard
normal one.

Proposition 4 (Berry—Esséen—Zolotarev bounds). Under the assumptions and nota-
tions of Proposition 1 and provided X , X ;1 #0 for at least one t (1<t<n — k), we have

IPlre =y [1X1] — @Ly/Di(| XD

" " 1/4
<4A:=ming 0.7975 % _ |wi|*,0.366145 <Z |wk,|3>
t=1 t=1

<0.366145 (15)
for all y, where @(y) denotes the N(0,1) distribution function.

It is clear that inequality (15) can provide both upper and lower bounds on the tail
areas of ry:

BE =1 — ®[y/Di(1X])] — A<Plri =y | 1X]]
<1 —P[y/Di(|X))]+ 4=BEy as. (16)

This implies that the normal approximation is good when 3~ [wy,|* is small. It also
follows from (15) that the conditional distribution of r; given |X|—hence also its
unconditional distribution—converges to a normal distribution when 3~ [wy,|* goes
to zero. But, of course, the main interest of (15) lies in the fact that it is an
operational finite-sample approximation result, not a convergence theorem.
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5. Simulation experiment

In order to provide some evidence on the size and power of the proposed bounds,
we considered an AR(1) process of the form

X=X, 1 4+u, t=1,...n, (17)

u,=d;v,, t=1,...,n, (18)

where the variables v, t =1,...,n, are i.1.d., the d,’s are scale parameters which
determine the form of the heteroskedasticity, and X, =0 (fixed). Two types of
distributions for v, were considered:

G) 0 "N@O, 1), t=1,...,n, (19)
©) o'~ Cauchy, t=1,...,n (20)

For the error heterogeneity, the patterns described in Table 1 were studied.

Results of our simulation are reported in Tables 2—4. In these tables, the statistics
[t(r1)1, [E(r1)], 18(p;)| and |&(p,)| represent four alternative ways of standardizing
traditional (parametric) autocorrelation coefficients, while E|; is the best exponential
bound. The autocorrelation statistics are:

1)l = |Varel,  |E ol = e /ol (21)
1)l = IVnpil, TP = (b — )/ okl (22)
where 7 is defined in (2),
n—k n
P % % o2
= Xi= X)X = X) /D (X, = X) (23)
=1 =1
Table 1
Heteroskedasticity patterns studied
Model Type
Ml Homoskedasticity d, =1 t=1,...,n
M2 One outlier I d, =10 ift=n/2
= otherwise
M3 One outlier 11 d, =100 ift=n/2
=1 otherwise
M4 Exponential T d, = /10 t=1,...,n
M5 Exponential 11 d, = e'? t=1,...,n
M6 Two outliers I d;, =10 ift=45or5+1
= otherwise
M7 Two outliers II d, =100 ift=5or5+1
=1 otherwise
MS8 Two outliers 111 d, =10° ift=%or5+1

=1 otherwise
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Table 2

Empirical levels of serial dependence tests at nominal level o = 0.05

Error distribution (v;) N(, 1) Cauchy

Heteroskedasticity type M1~ M2 M5 M7 MS Ml M2 M5 M7 MS
Sample size: n = 30 Asymptotic tests and bounds

[t(ry)] 390 1.67 33.60 49.46 5132 247 243 18.68 2344 3436
[7(r1)| 496 220 36.17 5226 5442 295 288 2034 2586 36.92
11Dl 422 191 31.78 4729 4911 243 232 1758 2191 32.69
17Dy 4.65 217 3445 4990 5195 288 2.62 19.15 2393 3490
Ey 095 0.87 2.28 0.86 0.00 1.10 1.33 2.84 1.68 0.01
Best bound 1.11  1.00 2.28 0.87 0.00 1.16 1.36 2.84 1.68 0.01
Tests based on Imhof critical values

[t(ry)] 5.09 230 36.59 52.75 5488 3.04 296 20.77 2634 37.30
[7(r1)| 545 249 3739 5371  55.65 321 3.17 2141 27.13 3797
1029 5.57 253 3501 5098 5237 295 3.0 1991 2478 35.58
17Dl 520 247 3574 51.34 5354 3.08 2.82 20.05 2548 36.12
Test based on global size correction

[t(ry)] 0.02  0.00 5.07 0.00 0.00 0.03 0.00 1.73 0.12 0.00
[i(r1)| 0.02  0.00 5.07 0.00 0.00 0.03 0.00 1.73 0.12 0.00
1] 002 000 48 000 000 002 000 160 012  0.00
17Dl 0.03  0.00 5.10 0.00 0.00 0.02 0.01 1.74 0.18 0.00
Tests based on model-specific size correction

[t(r1)] 486 501 5.07 5.10 530 517 5.15 5.24 4.94 5.01
[7(r1)] 486 5.01 5.07 5.10 530 5.17 515 5.24 4.94 5.01
11Dl 480 4.73 4.86 4.90 517 515 523 5.35 5.22 4.87
17Dy 4.60 493 5.10 5.29 477 511 5.04 5.22 5.10 5.28
Sample size: n = 60 Asymptotic tests and bounds

[t(r1)] 420 283 5090 6569 6621 288 292 3090 30.08 48.90
[7(r1)] 4.89 322 5192 66.58 67.12 3.07 3.09 31.61 30.75 49.77
11Dl 424 281 4998 6508 6557 284 2838 3030 29.55 48.09
17Dy 477 3.05 5127 6582 6649 295 3.13 31.19 3039 49.12
Ey 0.72 091 2.31 0.62 0.00 1.15 1.08 2.95 1.45 0.00
Best bound 1.01  1.21 2.31 0.62 0.00 124 1.10 2.95 1.45 0.00
Tests based on Imhof critical values

[t(r)| 499 329 5205 66.69 6723 312 312 3175 3090 49.87
[#(r1)] 520 348 5233 66.96 67.59 321 3.19 3193 31.12 50.17
[t(D)l 512 334 5129 66.19 66.70 3.09 3.09 31.25 30.51 49.13
17Dy 495 316 5185 6629 6691 3.07 320 31.57 3081 49.55
Tests based on global size correction

[t(ry)] 0.00 0.00 5.09 0.00 0.00 0.00 0.00 1.86 0.08 0.00
[7(r1) 0.00 0.00 5.09 0.00 0.00 0.00 0.00 1.86 0.08 0.00
2(p;)] 0.00 0.00 520 0.00 000 0.00 000 18 008 0.00
17Dl 0.00 0.00 5.03 0.00 0.00 0.00 0.00 1.88 0.07 0.00
Tests based on model-specific size correction

[t(ry)] 472 526 5.07 5.19 483 512 499 5.42 4.83 4.65
[2(r1)| 472 526 5.07 5.19 483 512 499 5.42 4.83 4.65
11Dl 459  5.09 5.11 5.34 496 503 485 5.35 4.85 5.03
[Pl 467 528 507 516 495 507 498 535 461 493
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Table 3

Empirical powers of serial dependence tests at level o = 0.05 under X, = 0.2X,_; +

Error distribution (v;)  N(0,1) Cauchy

Test\Model M1 M2 M5 M7 M8 M1 M2 M5 M7 M8
Sample size: n = 30 Asymptotic tests and bounds

Ey 4.81 7.15 3.51 19.51 48.06 1337 1459 729 19.78 44.49
Best bound 5.66 7.54 351 19.52 48.06 13.59 1472 729 19.78 44.49
Tests based on global size correction

[t(ry)] 0.22 0.02 7.77 0.19 0.00 0.08 0.11 2.98 0.66 0.00
[7(r1)] 0.22 0.02 7.77 0.19 0.00 0.08 0.11 298 0.66 0.00
2(py)] 0.12  0.02 661 003 000 003 008 236 025 0.00
17Dl 0.37 0.05 8.57 0.60 0.00 0.10 0.13  3.48 0.83 0.00
Tests based on model-specific size correction

[t(ry)] 1871 23.05 7.77 2477 2527 16.03 16.16 8.59 14.08 16.75
[7(r1)| 1871 23.05 7.77 2477 2527 16.03 16.16 8.59 14.08 16.75
11Dl 1236 13.78 6.61 20.38 2032 1095 10.72 7.37 11.67 13.63
17Dy 17.73  21.54 857 2493 2526 1571 1591 899 1490 17.42
Sample size: n = 60 Asymptotic tests and bounds

Ey 11.54 1392 354 21.85 49.02 26.04 2575 7.40 2578 44.41
Best bound 1371 1526 3.55 21.85 49.02 2632 2609 740 2579 4441
Tests based on global size correction

[t(r)| 0.00 0.00 8.00 0.11 0.00 0.01 0.00 3.16 0.33 0.00
[#(ry)| 0.00 0.00 8.00 0.11 0.00 0.01 0.00 3.16 0.33 0.00
12(Py)] 0.00 0.00 7.54 0.00 0.00 0.00 0.00 2.88 0.25 0.00
17Dy 0.01 0.00 8.33 0.20 0.00 0.02 0.00 3.37 0.36 0.00
Tests based on model-specific size correction

[t(ry)] 3322 4138 8.00 24.79 2542 4325 4227 8.66 1234 17.18
[7(r1)| 3322 4138 8.00 24.79 2542 4325 4227 8.66 1234 17.18
2(Dy)] 27.21 3331 7.54 2297 2338 2929 2799 8.14 11.11 16.55
17Dy 3226 39.92 833 2520 2575 41.73 41.69 9.00 12.50 18.09
is the usual “centered” autocorrelation coefficient, while u;, = —(n — k)/[n(n + 1)]

and 012( = (n — k)/[n(n + 2)] are the adjusted mean and variance suggested in Dufour
and Roy (1985) for the case of a sequence of i.i.d. observations.

For each of the above parametric statistics, we also report the results of tests based
on four ways of computing critical values: (1) standard asymptotic normal critical
values; (2) critical points based on the Imhof algorithm assuming the observations
are 1..d. Gaussian (the Imhof critical values were also cross-checked by simulation);
(3) critical values obtained by simulation under each specific distribution and
heteroskedasticity pattern considered; (4) critical values based on the largest critical
point that we found over the set of distributions and heteroskedasticity patterns
considered—i.e. models MI-M8 with v, following a N(0,1) or a Cauchy
distribution—which are all included in the null hypothesis of independence. Of
course, the second method is the best choice under the assumptions made by the
Imhof algorithm, but will not control the level (in the sense of ensuring that the
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Table 4

Empirical powers of serial dependence tests at level o = 0.05 under X, = 0.9X,_; +

Error distribution (v;) N(0,1) Cauchy

Test\Model Ml M2 MS5S M7 M3 Ml M2 M5 M7 M3
Sample size: n = 30 Asymptotic tests and bounds

Ey 97.94 9795 19.45 83.83 84.70 9439 94.67 3589 90.42 89.65
Best bound 98.20  98.18 19.45 84.21 8506 94.55 9492 3595 90.81 89.97
Tests based on global size correction

[t(r1)] 92.69  97.09 40.57 79.63 79.43 93.46 9440 56.06 88.42 86.01
[#(r1)| 92.69  97.09 40.57 79.63 79.43 9346 9440 56.06 88.42 86.01
[t(D)l 80.15  90.72 40.76 71.37 71.49 86.36 87.83 54.99 81.97 80.07
17Dy 8521 93.59 4730 73.70 73.76 89.35 90.57 61.06 84.20 81.78
Tests based on model-specific size correction

[t(ry)] 99.65 9995 40.57 8429 8385 98.99 99.09 71.44 92.65 88.98
[7(r1)] 99.65  99.95 40.57 8429 83.85 98.99 99.09 71.44 92.65 88.98
11Dl 98.52 1 99.71 40.76 77.68 77.46 98.28 98.41 71.21 88.70 84.87
1Py 99.06  99.84 4730 79.27 79.06 98.59 98.64 77.24 89.86 8598
Sample size: n = 60 Asymptotic tests and bounds

Ey 100 100 18.45 86.29 8585 99.09 99.15 35.00 96.03 90.32
Best bound 100 100 18.45 86.55 86.23 99.11 99.18 35.10 96.28 90.52
Tests based on global size correction

[t(ry)| 99.11  99.55 39.31 80.56 80.27 97.93 98.15 5543 9295 86.61
[7(r1)] 99.11  99.55 3931 80.56 80.27 97.93 98.15 5543 9295 86.61
11Dl 97.54  98.57 40.00 76.78 7575 97.02 97.44 5551 90.50 83.31
17Dy 98.11 98.92 4282 7746 76.66 9743 97.68 58.09 91.07 83.98
Tests based on model-specific size correction

[t(r1)] 100 100 39.31 8495 84.35 99.68 99.62 70.70 9631 89.96
[7(r1)| 100 100 39.31 8495 84.35 99.68 99.62 70.70 96.31 89.96
11Dl 100 100 40.00 81.52 81.11 99.58 99.57 70.87 94.98 87.73
17Dy 100 100 42.82 8235 81.69 99.60 99.59 7426 9535 88.13

probability of rejecting the null hypothesis of independence is not larger than the
level) in other cases covered by the null hypothesis of independence (e.g., with
heteroskedasticity); for further discussion of the Imhof algorithm, see Imhof (1961),
Koerts and Abrahamse (1969) and Dufour and King (1991). The third method
provides a theoretical benchmark that cannot be achieved in practice, because the
heteroskedasticity pattern is not specified by the null hypothesis of independence.
The fourth method is the one closest to what one would like to do for a distribution-
free test that is robust to non-normality and heteroskedasticity of unknown form,
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based on these statistics. It is not clear, however, that the (marginal) distributions of
these statistics can be bounded in a useful way under the (very wide) null hypothesis
considered by the conditional bounds we propose [for further of discussion of this
point, see Pratt and Gibbons (1981, Chapter 4), Dufour and Hallin (1991, Section 1),
Dufour (2003, Section 4.2)]. We do not have a way of producing provably valid
critical values for these tests. So the “size-corrected” critical values used for the
unconditional tests remain too “‘small” and the powers presented overestimate the
true power of these procedures for the nonparametric null hypothesis studied.

All tests are performed at the 0.05 nominal level. Sample sizes n = 30,60 were
considered. Results on empirical frequencies of type I errors (empirical level) appear
in Table 2, while powers for ¢ = 0.2,0.9 appear in Tables 3—4." Size and power
frequencies were evaluated using 10,000 replications. Critical values for the “‘size-
corrected” tests were obtained out of a preliminary simulation involving 100,000
replications. Most calculations were performed with Fortran 90 programs (Sun
Workshop Compiler Fortran 90 4.2) on a Unix server. Critical values based on the
Imhof algorithm were obtained using the SHAZAM computer program (version 9,
Whistler et al., 2001).

We see from these results that the bounds constitute the only method that allows
one to control the level of the test for all the patterns considered, in the sense that the
probability of type I error is never larger than the nominal level 0.05 of the test. By
contrast, the probability of type I error can get as large as 0.54 for n = 30 and 0.65
for n = 60 in the limited number cases considered in this experiment, so the size of
the tests considered is at least as large as these numbers, even though the nominal
size is 0.05.% In particular, tests based on exact critical values designed for i.i.d.
Gaussian observations behave very poorly in such circumstances.

Once standard tests are corrected for size, the bounds can lead to substantial
power gains. This holds despite the fact that our “‘size corrections’ are incomplete,
so the powers of the tests that are not based on bounds are overestimated. The
adjustments required to correct the size of these procedures are simply too “large” to
yield useful tests of the nonparametric hypothesis considered. This shows clearly that
the distribution-free bounds presented in this paper can at least provide a useful
check on the reliability of serial dependence tests that are not provably distribution-
free.

We also observed that the tightest exponential bound Ei; = B;(y;, |X]) yields the
best results in terms of power (for a level of 0.05), with a performance that is very
close to the one provided by the minimum value over all the bounds (which may be
supplied by a different bound, depending on the sample).

"More complete results are available from the discussion paper version of this article (Dufour et al.,
2004). In particular, these include results for three sample sizes (n = 30, 60, 100) and a larger set of values
of the autoregressive coefficient (¢ = 0.2,0.3,0.4,0.5,0.6,0.8,0.9).

2Under a sufficiently important heteroskedasticity, it is not clear that traditional test statistics have the
usual asymptotic normal distribution, so there is no presumption that standard asymptotic theory will
work well here or exhibit convergence. This can be contrasted with the fact that the conditional
distribution-free tests proposed here are provably exact under the same circumstances.
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6. Application to commercial paper rate

In this section, we illustrate how the bounds derived above can be used by
applying them to U.S. data on interest rates. We will study the autocorrelation
structure of the first and second differences of the logarithm of the commercial paper
rate [denoted by In(r,)] from 1951 to 1983 (quarterly, 132 observations). The source
of the data is Balke and Gordon (1986, pp. 789-808).

For these two series, we report in Tables 5 and 6 the usual centered version of
traditional autocorrelations p, [defined in (23)] and the uncentered autocorrelations
re [in (2)], for k =1,...,20. Since both series have means very close to zero, there is
very little difference between the two sets of autocorrelation coefficients (see also the
t-statistics reported in the tables). Even though we are mostly interested by
the minimal upper bound on the p-value for testing independence, we also report the
individual bounds for the sake of comparison (but one would not normally report all
this information). The bounds reported are for two-sided tests, i.e., we compute
bounds on P[|ri|=y||X|] = 2P[rr =1y |1 |1X]|] at y = Fx (observed value of r;). The
upper bounds on P[r;>|y|||X|] computed are based on the four exponential bounds
E\ <Ey<E3<Ey from (4), the improved Eaton—Pinelis-type bounds Bfp and
Bgp from (10), Chebyshev bounds based on the exact conditional even moments of
rr, binomial moments and normal moments as given in (13)-(14), and the
Berry—Esséen—Zolotarev type bound BEy given by (16). The Chebyshev bound
(C) based on the exact moments of ry is the minimal value yielded by the six first even
moments (p = 2,4,...,12), the one based on the binomial moments is the best over
the first 15 even moments (p = 2,4,...,30), while the normal moment bound is
based on (14). We also report the Berry—Esséen lower bound obtained from (16). All
the upper bounds we consider (except Bfp and Bgp) can take values larger than 1.0:
since a probability cannot be greater than 1.0, any one of these bounds can be
improved by taking the minimum given by the bound the 1.0. Consequently, when
an upper bound exceeds one, we report 1.0 in the table. Similarly, when the lower
bound is less than zero, we report 0.0 in the table.

From the results in Table 5, we see that the series X, = (1 — B)In(r;) = In(r;) —
In(r,—1) exhibits four autocorrelations r; (at lags k = 1,2, 6,7) whose absolute values
exceed two asymptotic standard errors (|rx|=2//n = 2/\/13_1 = 0.175). Among
these, three (k = 1, 6, 7) are clearly significant at level 0.05 under the assumption that
X1,..., X, have distributions symmetric about zero. It is also of interest to note that
the autocorrelations at lags k = 3,5,8,9,12,13, 14, 18 are clearly not significant at
level 0.05. Depending on cases, the best upper bound is obtained by using either a
Chebyshev (C), Eaton-type (Bfp) or Berry—Esséen bound.

The autocorrelations for the second differences X, = (1 — B)*In(r,) in Table 6
exhibit only one autocorrelation (at k = 2) whose absolute value is greater than two
asymptotic standard errors (|ry|>2//n = 2/+/130 =0.175). The nonparametric
upper bound on the p-value for |r;| indicates that this is significant even for a level as
low as 0.00002; the best upper bound is given here by the exponential bound E|. In
this case, all the upper bounds (except the Berry—Esséen one) indicate that this is
significant at level 0.005. The Berry—Esséen lower bound indicates that the
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autocorrelations at lags k = 5,12, 13 are clearly not significant at level 0.05. Overall
the second differences of In(r;) seem to have a simpler autocorrelation structure than
the first differences (1 — B) In(r,).

7. Conclusion

In this paper, we suggested several ways of bounding the distribution of serial
correlation coefficients, under a nonparametric null hypothesis of serial indepen-
dence, allowing for both discrete and continuous distributions as well as general
heterogeneity of unknown form. As required in the case of a sufficiently general
heteroskedasticity, the proposed technique is based on the conditional distribution of
the autocorrelations given the absolute values of the observations, which is then
bounded by considering the distribution of the signs. The bounds proposed are valid
for any sample size and do not rely on asymptotic approximations. In order to do
that we assumed that the observations have symmetric (nonidentical) distributions
with respect to known medians.

These are, of course, real restrictions. But minimal distributional assumptions are
needed to get testable hypotheses. The symmetry assumption is quite common in
econometrics and statistics and holds for many important distributional families
(e.g., Gaussian distributions, Cauchy distributions, a wide class a stable laws, etc.)
Relaxing it will require the introduction of alternative assumptions, such as i.i.d.
observations (which precludes heteroskedasticity); see Dufour and Roy (1985) and
Hallin and Puri (1992). Of course, which set of restrictions is most appropriate will
depend on the context.

The assumption that the observations have known medians can be relaxed more
easily. For example, if we assume that the observations have the same median, it is
possible to obtain an exact confidence interval for this unknown median (which plays
the role of a nuisance parameter), for example by inverting a sign test or the
nonparametric ¢ test described in Dufour and Hallin (1991). One can then test serial
independence by using a two-stage confidence procedure similar to the ones
proposed in Dufour (1990), Campbell and Dufour (1997) and Dufour and Kiviet
(1998) in other contexts. Designing such a procedure, or alternative ones that would
deal such nuisance parameters, goes beyond the scope of the present article and will
be considered in a subsequent paper.
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Appendix A. Proofs

Proof of Proposition 1. Let Z;, = X, X, t =1,...,n— k, and let sgn(x) be the sign

function: sgn(x) = —1 if x<0,0 if x =0, and 1 if x>0. Then we can write
n—k
re = Di(I1X) > WSk = Di(|X )Ry, (24)

t=1

where Sy, =sgn(Zy), t=1,...,n—k,R; = Z:’;lk wikiSk, and Y- wi, = 1. When
Zp =+ =Ziy—k =0, we have r, = Di(|X|) =0, so that P[r,>y||X|]=0, as.,
and the result holds trivially. We now suppose that Z;,#0 for at least one ¢. Let
Ar(1XD) = {1 X #0,1<t<n—k} and  Br(|X|) = {¢: [ X X1k | #0, I <t <n — k}.
Clearly, t € Bi(] X)) if and only if ¢t € Ax(|X]|) and ¢+ k € A,(|X]|), hence

n—k
R = Z Wit Skt = Z Wit Ski. (25)
=1 1€ B (1X)
By the independence of X,..., X, and by the symmetry assumption, the vari-

ables in the set {sgn(X,):te€ A;(]X]|)} are independent conditional on |X]|,
with P[sgn(X,) = —1||X|] = P[sgn(X,;) = 1||X|] = 0.5. Further, since sgn(Zy,) =
sgn(X,)sgn(X,1x), it is easy to see that the variables in the set {Sy, : t € Bi(|X|)} are
independent conditional on |X| with

PlSk = —111X1] = P[Sk, = 111X[] = 0.5; (26)
see Dufour (1981). It is clear from (24)—(26) that the conditional distribution of r
given | X| is symmetric about zero. Further, using Markov’s inequality and observing
that cosh(wy,z) = cosh(0) = 1 for t¢ Bi(|X|), we have

n—k

P[R >y || X[1<E[exp(zRx | IX)]/ exp(zy) = [ cosh(ws.2)/ exp(zy) 27)
=1

for all z>0 and for all y. Consequently, for all y>0,

n—k n—k
PIRi> 7] 1X[]< igg{exm—zy) I1 COSh(szZ)} < exp(—3) [ cosh(r)
=z =1 =1

= exp(—»?) []  cosh(wiy)< exp(—y?){cosh(y//mp)} "

1eBi(1X1)

< exp(—"){expl(y/ /7 121} = exp(=12/2)
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where the second inequality is obtained by taking z = y in (27), the third one follows
from Corollary 1 and Example 2 of Eaton (1970), and the last one is obtained by
noting that cosh(x)< exp(x?/2) for x>0 (Edelman, 1986). Inequality (4) follows
from (27) on observing that ry = Di(|X|)Rr. O

Proof of Proposition 2. When X, X, =0, fort=1,...,n—k, we have r; = 0 and
(10) clearly holds. When X, X, #0 for some ¢, the result follows from (24) to (26),
and then by applying Proposition 1 from Dufour and Hallin (1993) to Ry in
(25. 0O

Proof of Proposition 3. When X, X, =0, for t=1,...,n—k, we have r; =0,
and (13)-(14) clearly hold. Otherwise, the result follows from (24) to (26), and
Proposition 2 in Dufour and Hallin (1992). O

Proof of Proposition 4. The result is immediate from (24) to (26) and Proposition 3
from Dufour and Hallin (1992). O

Appendix B. Conditional moments of the autocorrelations

The conditional moments E(# | |X) in (13) can be computed by noting that
E(4 11X1) = De(IX 1 E(R 11X1), (28)

where, provided Di(|X|)#0 (otherwise, r, =0), E(R;||X])=1 and, for p=
4,6,...,12,E(R} | |X|) is given by the following formulae: setting Wy, = ';;lk Wy

E(R{IIX]) =3 = 2W i, (29)
E(RS|1X|) = 15— 30W 4 + 16W s, (30)
E(RY | |X|) = 105 — 420 Wy + 14007, + 448 Wy — 272 W s, (31)

E(R | |X]) = 945 — 6300 Wiy + 6300W3, 4 10080 Wy — 6720 W s Wiy
— 12240 W g + 7936 W 10, (32)

E(R}? |1X1]) = 10395 — 103950 W x4 + 207900 W7, — 46200 W3, + 221760 W ks

— 443520 W 16 Wis + 118272 Wi6 — 403920 W g
+ 269280 W g Wia + 523776 Wi 10 — 353792 Wi 1. 33)
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