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ABSTRACT

Factor models based on Arbitrage Pricing Theory (APT) characterize key parametersjointly and nonlinearly,
which complicates identi�cation. We propose simultaneous inference methods which preserve equilibrium
relations between all model parameters includingex-postsample-dependent ones, without assuming identi�ca-
tion. Con�dence sets based on inverting joint tests are derived, and tractable analytical solutions are supplied.
These allow one to assess whether traded and nontraded factors are priced risk-drivers, and to take account
of cross-sectional intercepts. A formal test for traded factor assumptions is proposed. Simulation and empir-
ical analyses are conducted with Fama-French factors. Simulation results underscore the information content
of cross-sectional intercept and traded factor restrictions. Three empirical results are especially noteworthy:
(1) the Fama-French three factors are priced before 1970; thereafter, we �nd no evidence favoring any factor
relative to the market; (2) heterogeneity is not suf�cient to distinguish priced momentum from pro�tability or
investment risk; (3) after the 1970s, factors are rejected or appear to be weak, depending on intercept restrictions
or test portfolios.

Key words: capital asset pricing model; CAPM; Arbitrage Pricing Theory; Black; Fama-French factors; mean-
variance ef�ciency; non-normality; weak identi�cation; identi�cation-robust; projection; Fieller; multivariate
linear regression; uniform linear hypothesis; exact test; Monte Carlo test; bootstrap; nuisance parameters.
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1 Introduction

Arbitrage Pricing Theory (APT) and its concepts are core components of �nancial economics. Despite enduring
disagreements about risk factors and the measurement of risk premiums, related factor models are workhorse
tools for asset pricing; for some references which illustrate these debates, see Harvey, Liu and Zhu (2016),
Gagliardini, Ossola and Scaillet (2016), Ahmed, Bu and Tsvetanov (2019), Hou, Mo, Xue and Zhang (2018),
and Chib and Zeng (2019). This paper addresses an aspect of suchmodels not broadly recognized: weak iden-
ti�cation. If identi�cation can be arbitrarily weak, conventional methods deliver tests and con�dence intervals
that are invalid even asymptotically and thereby yield misleading empirical decisions. Motivated by these con-
siderations and the abundance of available candidate factors, this paperproposes econometric methods that: (i)
reveal weak factors when present and deliver valid inference on pricing; (ii) detect misspeci�cation including
assumptions on tradable factors; and (iii) preserve APT fundamentals with traded and nontraded factors.

Our analysis is based on equilibrium speci�cations that characterize the risk premiumsjointly, along with
the zero-beta rate, factor expectations and the unknown factor loadings(the so-called factorbetas). Formally,
the APT stipulates that the unconditional expectation of returns, denoted thereafter as then-dimensional vector
mr , is linear in factor loadings:

mr = i ngc + b0G (1.1)

whereGis the vector of risk premiums, the scalargc is the so-called cross-sectional intercept or the zero-beta
rate,b = [ b1 � � � bn] is theq� n matrix of loadings andq is the number of relevant risk factors. All of these
parameters includingb are unknown.

This explains why factor models based on (1.1) have traditionally been estimated using so-called two-pass
methods [as reviewede.g. by Shanken and Zhou (2007)], where: (i) the �rst pass uses time series regressions
of returns on factors, in order to estimateb; and (ii) the second pass involves cross-sectional regressions of
returns on the estimatedb, in order to identifyG. Consequently, measurement errors arising from estimated
betashave long been considered as a major identi�cation threat. A recent research strand also highlights deeper
problems resulting from insigni�cant or homogenousbetas; see Kan and Zhang (1999), Beaulieu, Dufour and
Khalaf (2009), Kleibergen (2009), Beaulieu, Dufour and Khalaf (2013), Kan, Robotti and Shanken (2013),
Gospodinov, Kan and Robotti (2014), Kleibergen and Zhan (2015, 2020), and Kleibergen, Lingwei and Zhan
(2019).

More broadly, it is clear from (1.1) thatGis not identi�ed unless the true and unknownb matrix has full rank.
Identi�cation problems thus affect multiple parameters and may have severalsources. Sorting out these multiple
in�uences may be dif�cult, due to the nonlinear structure of (1.1). Instead, our aim is to present measures of
estimation uncertainty that preserve the APT-based association between allmodel parameters includingrealized
or sample dependent random ones. In particular, an alternative parameter introduced by Shanken (1985) and
Shanken (1992) as theex-postrisk premium has recently regained interest:

G� = G+ R̄ � mR (1.2)

whereR̄ is the empirical factor mean andmR is its expectation; see Khalaf and Schaller (2016), Jegadeesh,
Noh, Pukthuanthong, Roll and Wang (2019), and Kim and Skoulakis (2018).

Given the importance ofalphasand betasfor assessing the quality of an asset pricing model, we �rst
propose simultaneous con�dence intervals for (in turn) the unrestricted components of the time-series intercepts
and each one of the loading vectors. Next, we construct level-correctcon�dence sets for the zero-beta rate and
the risk premiums again viewed jointly and using traditional �rst-pass estimates, yet accounting for estimation
error regardless of whether factorbetasare jointly informative or heterogenous enough. In particular, these
con�dence sets serve to robustly assess whether candidate factors are priced risk-drivers. This approach extends
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the single-benchmark identi�cation-robust method proposed by Beaulieu et al. (2013) to multivariate beta-
pricing models.

In doing so, a framework is required in the presence of traded and non-traded factors. Despite well-known
advantages, restricting focus to traded factors is unduly restrictive; see Shanken and Weinstein (2006), Shanken
and Zhou (2007), and the above cited literature on competing risk factors;for a discussion on some advantages
of traded factors, see Gospodinov, Kan and Robotti (2019), Barillas and Shanken (2017, 2018), and Pukthuan-
thong, Roll and Subrahmanyam (2019). Concretely, implications of tradedfactors have been operationalized
by restrictions involving the zero-beta rate [Barone-Adesi, Gagliardini and Urga (2004), Penaranda and Sen-
tana (2016)]. While this principle is well accepted, empirical analysts often sidestep cross-sectional intercepts
[Lewellen, Nagel and Shanken (2010)], thereby forfeiting important equilibrium relations. In contrast, we
provide simultaneous con�dence sets with both traded and nontraded factors. In addition, and crucially, our
empirical approach exploits the information content of the cross-sectionalintercept to uncover links that would
likely be lost when returns are considered in deviation from some asset, asin Kleibergen (2009), Kleibergen
and Zhan (2015), Kleibergen et al. (2019), Kleibergen and Zhan (2020). Simultaneous inference ensures that
equilibrium restrictions are jointly maintained, which as emphasized, is a fundamental equilibrium requirement.
This is however not the whole story, since identi�cation concerns providecompelling statistical rationale for
simultaneous methods.

Indeed, to control statistical coverage without assuming identi�cation, we proceed by inverting joint model
tests. These include: (i) the joint regression intercept test statistic by Gibbons, Ross and Shanken (1989)
and its counterparts pertaining to each factor [seee.g. Dufour and Khalaf (2002) and Beaulieu, Dufour and
Khalaf (2010)], and (ii) the cross-sectional statistics discussed by Shanken and Zhou (2007) and Lewellen
et al. (2010). When underlying parameters are �xed, all these statistics are of the Hotelling form [Hotelling
(1947)]. We show that the resulting inversion requires multi-dimensional quadratic inequalities. We provide
a uni�ed and tractable analytical solution to these inequalities and supportive�nite sample and simulation
assessments in noni.i.d. and non Gaussian settings, all of which are new to both asset pricing and econometric
literatures. Analytical computations rely on the mathematics ofquadrics[Dufour and Taamouti (2005), Dufour
and Taamouti (2007)].1

Features of our methodology which are worth emphasizing – as well as illustrated in an extensive simulation
study – include the following. The �rst one is a joint treatment of factors viewed simultaneously rather than
individual proxies. The second feature is our reliance on set rather than just point estimates for parameters of
interest. In contrast with Kan et al. (2013) and Gospodinov et al. (2014), the statistics we invert to derive these
sets are nott-type measures and can be empty or unbounded, re�ecting misspeci�ed information or lack thereof.
The third notable feature is our analytical solution to both point and set estimates. In contrast with Kleibergen
(2009), Kleibergen et al. (2019) and Kleibergen and Zhan (2020) who propose numerical test inversion methods,
our analytical solutions cover the zero-beta rate and control for factors that are traded portfolios. In addition,
we propose a formal test for traded factors assumptions, which to the best of our knowledge is new to the
literature. Our simulation results underscore the information content of cross-sectional intercepts and traded
factor restrictions.

Our main empirical �nding concerns the potential weakness (from an identi�cation viewpoint) of the Fama-
French-Carhart factors [Fama and French (1992), Fama and French (1993), Carhart (1997), Fama and French
(2015)]. Using NYSE data from 1961-2010, we �nd the Fama-French three factors are priced concurrently
before 1970 with equally weighted industry portfolios, as well as with size-sorted portfolios in the 1970s (only).
Evidence of pricing weakens thereafter, as the model is either rejected orweakly identi�ed, depending on
intercept restrictions or test portfolios. Interestingly, we do not �nd evidence favouring size and book-to-

1For further quadric based solutions in different contexts, see Bolduc,Khalaf and Yelou (2010) for inference on multiple ratios, and
Khalaf and Urga (2014) for inference on cointegration vectors.
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market risk over the market risk. For instance, with size portfolios, in all subperiods except the 1980s and
2000s in which our con�dence sets on the market risk are uninformative,the market is signi�cantly priced. The
Carhart and the recent Fama and French (2015) factors are affected by weak-identi�cation problems. Finally,
the considered models do not fare well when test assets are used jointly, and data is generally less informative
after 2000.

The paper is organized as follows. Section 2 sets the asset pricing and statistical framework. Section 3
provides our inference methodology. Our simulation and empirical results are reported in section 4. Section 5
concludes the paper, and proofs are presented in a technical appendix.

2 Model and identi�cation framework

Let r i , i = 1; : : : ; n; be a vector ofT returns onn assets, over the periodt = 1; : : : ; T, andR = [ R 1 � � � R q ] a
T � q matrix of observations on a set ofq risk factors that potentially explain returns. It is now generally agreed
that candidate models should also attempt to price proposed factors and include both traded and nontraded
factors. To describe how to do so, assume thatR 1 is a vector of returns on a tradable factor, for example a
market benchmark, so thatR = [ R 1 F ] whereF =[ R 2 � � � R q ] is a T � (q� 1) matrix of observations on
(q� 1) nontraded factors.2

The APT equilibrium condition leads one to consider regressions of the form

r i = ai i T + R 1bi1 + F biF + ui ; i = 1; : : : ; n; (2.1)

ai = g0(1� bi1) � g0
F biF ; [restricted] (2.2)

ai = gc � g0bi1 � g0
F biF ; [unrestricted] (2.3)

wherebi1 is a scalar,biF is a(q� 1) � 1 vector,g0 andgF incorporate the risk premiums as follows:

q =
�
g0; g0

F

� 0� mR � G; (2.4)

whereGandgc are as in (1.1) andmR = ( mR 1
; : : : ; mR q

)0 is the vector of unknown factor means as in (1.2); see
Campbell, Lo and MacKinlay (1997, Chapter 6), Shanken and Zhou (2007) and references therein.3

2.1 APT conditions, traded and nontraded factors

Condition (2.3) introduces the APT risk premiums as free parameters, hencewe denote it as theunrestricted
APT speci�cation. In contrast, condition (2.2) that we describe as therestrictedspeci�cation further allows
the traded factorR 1 to price itself [Lewellen et al. (2010, Prescription 4)] if it is added to the set of left-hand
side test assets. In other words, sinceR 1 itself should satisfy (1.1) then it should be thatG1 = mR 1

� gc, which
in view of (2.4) implies thatg0 = gc. Clearly, settingg0 = gc in (2.3) gives (2.2). This restriction and the
information content ofgc matter importantly for model assessment [Barone-Adesi et al. (2004), Lewellen et al.
(2010) and Penaranda and Sentana (2016)].

Estimating and testing this model confront enduring hurdles since theb matrix is unobserved. Indeed, from
(2.2) or (2.3), it is clear that the components ofq cannot be identi�ed,e.g.when the corresponding components
of bi = [ bi1; b0

iF ]0 do not differ enough overi (i.e., in cross-section), and in particular, are jointly close to one

2We consider a single traded factor for notational ease. Extensions to multiple tradable factors follow straightforwardly. Our main
empirical analysis considers this restriction for the market benchmark only, hence this notation.

3Taking unconditional expectations of the unconstrained (2.1) regression with a time invariant perspective impliesmR =
(a1; : : : ; an)0+ b0mR ; which equated with (1.1) yields (2.3).
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or to zero. Possibly non-informative factors and reliance on portfolios which tends to equalizebetasimply that
identi�cation cannot be taken for granted.

Furthermore, (2.4) evinces the fundamental dif�culty of identifyingG, asmR is unknown. This fact has long
been exploited to justify two-pass methodologies [as reviewed ine.g. Shanken and Zhou (2007)].4 Instead,
Shanken (1985) provides economic motivation for using theex-postrisk premiumG� de�ned in (1.2) as a
function of the factors' empirical mean̄R . In the present regression context,G� = R̄ � q. Empirically, it has
long been recognized [seee.g.Shanken (1992), Campbell et al. (1997, Chapters 5 & 6)] thatq can be estimated
even thoughmR is unknown. From there on,G� can be estimated conditioning on the factors. The gains from
usingG� are especially notable in �nite samples as̄R can deviate markedly frommF in some subperiods. We
thus focus on this parameter given our �nite sample perspective, to exploitthe statistical properties of (2.1).

It is also important to note that (2.2) or (2.3) are jointly determined by the elementsof the vectorq, so
a change in one element ofq may be “cancelled” by a change on another element ofq. Consequently, it is
crucial to make joint inference of the vectorq. Formally, we derive a joint con�dence region forq conditioning
on the factors (imposing or relaxingg0 = gc) and project this region to obtain simultaneous con�dence sets for
each of the components ofq. We next assess pricing re�ecting zero-restrictions on the components of R̄ � q:
each factor is considered not priced if its empirical mean is not covered bythe con�dence set associated with
the corresponding component ofq. Our con�dence intervals are simultaneous, which implies that decisions on
pricing will also be simultaneous.

As emphasized above,gc also holds important information on model �t, and so does the restrictiong0 = gc.
Our method will produce a con�dence interval forgc in addition to each component of

�
g0; g0

F

�
. Testing

gc = g0 can be conducted via the following reparameterization:

gc � g0bi1 � g0
F biF = g�

c � g0 (bi1 � 1) � g0
F biF ; g�

c = gc � g0 : (2.5)

The intercept can be “partialled-out” if we rewrite the regressions in deviation from one of them, leading to
n� 1 equations, in which case we will obtain another con�dence interval for each component of

�
g0; g0

F

�
, at the

expense of foregoing information ongc. The statistic we consider to do this is a monotonic transformation of
the LR-based criterion [the so-called FAR test] introduced by Kleibergen (2009). Interpretations on pricing are
unchanged, and as in Kleibergen (2009), Kleibergen et al. (2019) and Kleibergen and Zhan (2020), the statistic
is invariant to the equation chosen as the deviation basis. We formally assessthe pros and cons of evacuating
gc, for estimation and �t purposes.

For further reference, the frameworks we consider are categorizedas follows: model (2.1)-(2.2) is denoted
RAPT whereR stands for “restricted” which refers to traded factor constraints; model(2.1)-(2.3) which relaxes
the latter constraints is denotedUAPT whereU stands for “unrestricted”, in which case we refer to partialling
gc out as thePAPT approach, whereP stands for “partialling-out”. We will also refer to the hypothesis

H �
c : g�

c � gc � g0 = 0 (2.6)

which can be tested by checking whether the con�dence set forg�
c in (2.5) covers zero.

2.2 Reduced rank regressions

The above equilibrium models can be de�ned via rank restrictions on a multivariate regression of the form:

Y = XB+ U; U = WJ0, Yt = B0Xt + Ut ; Ut = JWt ; t = 1; : : : ; T ; (2.7)

4”An average return carries no information about the mean of the factorthat is not already observed in the sample mean of the
factor.” [Cochrane (2005, p. 245)]. See also Penaranda and Sentana (2016), on including moment conditions on factors means with
GMM.
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whereY is a T � n matrix of observations onn endogenous variables,X is a T � k full-column rank matrix
of exogenous variables,Y0

t andX
0

t are, respectively, thet-th row ofY andX so thatYt andXt provide thet-th
observation on the dependant variables and regressors,J is unknown, non-singular and possibly random,U

0

t is
thet-th row ofU, W is aT � n matrix of random errors,W

0

t is thet-th row ofW, and the joint distribution of
W1; : : : ; WT is either fully speci�ed, or speci�ed up to a nuisance parameterm. Finite sample results assume
we can condition onX for statistical analysis.

Throughout the paper, we maintain the following assumptions and notation.D (d1; : : : ; dm) refers to an
m-dimensional diagonal matrix with diagonal elementsd1; : : : ; dm. i j refers to aj-dimensional vector of ones.
The number of factors isq = k� 1. DIAG(A) refers to a column vector from the diagonal of a matrixA. For
any N � K matrix A, vec(A) returns anNK � 1 vector, with the columns ofA stacked on top of each other;
M [A] = I � A(A0A) � 1A0 for any full column rank matrixA. We refer to a 1� a level CS for a parameter as
CSa (:). Let

B̂ = ( X0X) � 1X0Y ; Ŝ= Û0Û; Û = Y � XB̂: (2.8)

For presentation ease, we use the following matrix partitions:

(X0X) � 1 =
�

x11 x12

x21 x22

�
(2.9)

wherex11 is a scalar,x21 = x120 is q� 1 andx22 is q� q, and

B =
�

a0

b

�
; B̂ =

�
â0

b̂

�
; b =

�
b1 � � � bn

�
=

2

6
4

b0
2
...

b0
k

3

7
5 ; b̂ =

2

6
6
4

b̂
0
2
...

b̂
0
k

3

7
7
5 (2.10)

wherea = ( a1; : : : ; an)0 is the vector ofn intercepts, andb is q� n.
The rank restrictions in question can be written as:

HRAPT : (1; q0)B = 0; for some unknown vectorq; (2.11)

HUAPT : (1; q0)B = f i 0
n; for some unknown vector(q0; f )0; (2.12)

whereq is q � 1 and f is an unknown scalar.5 Indeed, rewriting (2.1)-(2.2) with left-hand side returns in
deviation fromR 1 yields, fori = 1; : : : ; n :

r i � R 1 = ( R 1 � i Tg0) [bi1 � 1] +
�
F � i Tg0

F

�
biF + ui ; i = 1; : : : ; n;

or alternatively

r i � R 1 = ai i T + R 1di + F biF + ui ; ; i = 1; : : : ; n (2.13)

ai = � g0di � g0
F biF ; di = bi1 � 1; (2.14)

which is a special case of (2.7) whereY stacks the matrix of returns in deviation from the tradable benchmark,
imposing (2.11) with

q =
�
g0; g0

F

� 0: (2.15)

The non-tradable case (2.1)-(2.3) is the regression

r i = ai i T + R 1bi1 + F biF + ui ; i = 1; : : : ; n; (2.16)

ai = gc � g0bi1 � g0
F biF (2.17)

5Typically, (2.11) and (2.12) assume thatk � n.
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which again is a special case of (2.7) whereY stacks the matrix of returns, imposing (2.12) with

q =
�
g0; g0

F

� 0, andf = gc:

Regression (2.1)-(2.3) can also be re-expressed as

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n; (2.18)

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0; (2.19)

in which imposing (2.12) withf = g�
c provides a test of (2.6). Finally, it is also straightforward to see that the

model in deviation from one of the returns yields a system ofn� 1 equations conformable with (2.11).
This paper focuses on estimating and testingq andf . Furthermore, we provide cross-equation simultaneous

con�dence sets for the parameters of the unrestricted asset pricing regression. Formally, we invert the test that
�xes each row ofB, in turn, to a �xed vector; the associated hypotheses takes the form

H j : sk[ j ]0B = b̄
0
j ; j 2 f 1; : : : ; kg; b̄ j known (2.20)

wheresk[ j ] denotes ak-dimensional selection vector with all elements equal to zero except for thej-th element
which equals 1. To interpretH j , recall that the classical zero restriction hypothesis underlying the Hotelling
statistic which is viewed as the multivariate extension of the Student-t based signi�cance test corresponds to

H0j : sk[ j ]0B = 0; j 2 f 1; : : : ; kg (2.21)

so for example usingsk[1] provides inference on the unrestricted regression intercept, and in the context of
an unrestricted regression in deviation from the tradable factor [(2.13) above, ignoring the constraints],sk[2]
allows one to assess thebetason the tradable factor in deviation from one. Assembling theb̄ j vectors that
are not rejected at a given level yields a joint con�dence set for the corresponding row ofB which contain, in
turn for j = 1; : : : ; k, then-dimensional vector of intercepts, and then-dimensional vector of betas (possibly in
deviation from one) on each factor over all considered assets.

In addition to useful information on underlying assets, the unrestricted regression intercepts andbetas
underlie identi�cation of the above de�ned risk premiums. Formally, forq to be recoverable with no further
data and information (in particular in the absence of other instruments), thebetasper factor need to vary enough
across equation. Concrete identi�cation failure problems discussed in Beaulieu et al. (2013) (and the reference
therein) relate to benchmarkbetasjointly [acrossi] equal to one. Kleibergen (2009) discusses the case of small
betasin the sense of jointly [acrossi] equal to zero, which may be traced back to Kan and Zhang (1999).
Regardless of the source, identi�cation ofq is driven by the joint cross-equation nature of the information
conveyed by each factor. Our simultaneous approach for inference on q as well as for the underlying reduced
formbetasthus zooms in on the core of the �nancial problem. Concretely, using portfolios rather than individual
assets as test assets (i.e., for r i in our notation) tends to equalizebetasacross equations; whether moving away
from portfolios to individual assets which calls for alternative information reduction technique is an answer to
this problem remains an open question which is beyond the scope of the bulk of the this literature as well as the
present paper which requiresT � k � n > 0. Our methodology is presented in the next section for the general
(2.7) regression.

3 Con�dence sets for factor loadings and risk premiums

Following Beaulieu et al. (2013) and Kleibergen (2009), we focus on inverting identi�cation-robust statistics,
i.e., statistics whose null distributions are provably invariant to whether identi�cation holds or not. We focus
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on Hotelling-type statistics

L (q; f ) =
[(1; q0)B̂� f i 0

n]Ŝ� 1[B̂0(1; q0)0� f i n]
(1; q0)(X0X) � 1(1; q0)0 (3.1)

L (q) =
(1; q0)B̂Ŝ� 1B̂0(1; q0)0

(1; q0)(X0X) � 1(1; q0)0 (3.2)

whereq0 andf are given. These statistics serve to assess the special cases ofHRAPT andHUAPT [in (2.11)) -
(2.12] respectively

HR : (1; q0)B = 0; q known: (3.3)

HU : (1; q0)B = f i 0
n; (q0; f )0known; (3.4)

In addition, we invert the series of statistics associated with each of theH j (2.20):

L (b̄ j ) =
(b̂ j � b̄ j )

0Ŝ� 1(b̂ j � b̄ j )

sk[ j ]0(X0X) � 1sk[ j ]
t n

n
(3.5)

where and̂b
0
j is the jth row ofB̂: These statistics are also of the Hotelling form [see Dufour and Khalaf (2002)];

note that the classical Hotelling statistics to assess each ofH0j (2.21) are

L 0j =
sk[i]0B̂Ŝ� 1B̂0sk[i]
sk[i]0(X0X) � 1sk[i]

: (3.6)

When errors are normal then

L (q)
t n

n
� F (n; t n) ; L (q; f )

t n

n
� F (n; t n) ; L (b̄ j )

t n

n
� F (n; t n) (3.7)

wheret n = T � k � n+ 1. The latter distributional results do not require any identi�cation restriction.6 L 0j

also follow the same null distribution. Underlying �nite sample theory is discussed in section 3.3. Simulations
reported in 4.1 show that for the problem under consideration corresponding to 5 or 10 year subsamples, the
normal cut-off controls size whether errors are multivariate Student-t or in the presence of GARCH effects.
Prior to these analyses, we discuss in the next section how inverting the proposed tests can be performed
analytically.

3.1 Analytical solution

Inverting the above tests requires solving in turn, over(q; f ), q andb̄ j respectively, the inequalities

L (q; f )
t n

n
� fn; t n;a ; L (q)

t n

n
� fn; t n;a ; L (b̄ j )

t n

n
� fn; t n;a ; (3.8)

where fn; t n;a denotes thea -level cut off point from theF (n; t n) distribution. The following uni�ed analysis
using the mathematics of Quadrics generalizes the Beaulieu et al. (2013) solution to: (ii) the multi-factor
context, and (iii) the estimation of factor loadings and Jensen-typealphas.

Each inequation in (3.8) is rewritten as

(1; z 0)A(1; z 0)0� 0 (3.9)

6Other than the usual Least Squares assumptions onX0X andŜof course.
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wherez is them� 1 vector of unknown parameters andA is an(m+ 1) � (m+ 1) data dependent matrix. Next,
inequality (3.9) is re-expressed as

z 0A22z + 2A12z + A11 � 0 (3.10)

which leads to the set-up of Dufour and Taamouti (2005) so projections based CSs for any linear transformation
of z of the formw0z can be obtained as described in these papers. The solution is reproduced in the Appendix
for completion.

Moving from (3.9) to (3.10) requires partitioningA as follows

A =
�

A11 A12

A21 A22

�
(3.11)

whereA11 is a scalar,A22 is m� m, andA12 = A0
21 is 1� m. Simple algebraic manipulations suf�ce to show that

for the test de�ned by (3.2), we have:

A = B̂Ŝ� 1B̂0� (X0X) � 1 (n=t n) fn; t n;a (3.12)

settingz = q. Using the partitionings (2.10) and (2.9),A11 = â0Ŝ� 1â � ((n=t n) fn; t n;a ) x11, A12 = A0
21 =

â0Ŝ� 1b̂0� [(n=t n) fn; t n;a ]x12 and
A22 = b̂Ŝ� 1b̂0� [(n=t n) fn; t n;a ]x22: (3.13)

In the case of (3.1), we havez =
�
q0; f

� 0and

A =
�

B̂Ŝ� 1B̂0� (X0X) � 1 fn; t n;a
n
t n

� B̂Ŝ� 1i n

� i 0
nŜ� 1B̂0 i 0

nŜ� 1i n

�
: (3.14)

Finally, inverting (3.5) yieldsz = b̄
0
i and the quadric form (3.10) with

A22 = Ŝ� 1; A12 = � b̂ i
0Ŝ� 1; A11 = � n

�
sk[i]0(X0X) � 1sk[i]

�
=t n: (3.15)

The outcome of resulting projections can be empty, bounded, or the union oftwo unbounded disjoint sets.
Dufour and Taamouti (2005) discuss such outcomes depending importantlyon theA22 matrix. In particular, the
con�dence set is unbounded ifA22 is not positive de�nite. It is thus clear that inverting (3.5) produces bounded
sets aŝSis assumed invertible. The following Theorem further shows that if any of the Hotelling tests based on
L 0j , j = 2; : : : ; k is not signi�cant then theA22 matrix will not be positive de�nite and the con�dence set will
be unbounded. That is, if any of the factors is redundant from a joint signi�cance perspective, then information
on risk pricesfor all factorsis compromised.

Theorem 3.1 In the context of(2:7), if

(t n=n) L j < fn; t n;a ; j 2 f 2; : : : ; kg (3.16)

whereL i are the Hotelling statistics de�ned in(3:5), then the CS forq as de�ned in(2:11)] which inverts the
statistic(3:2) at thea -level is unbounded.

The above condition is suf�cient but not necessary. It follows that although Hotelling tests on each factor
are useful, they remain insuf�cient, and perhaps more importantly, are embedded in our methodology without
compounding type-I errors. This characterization also holds when inverting the test de�ned in (3.1) and (3.7).
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3.2 Empty con�dence sets and minimum distance statistics

The con�dence set for factor loadings cannot be empty. Indeed, Dufour and Taamouti (2005) show that in the
context of (3.10) and a positive de�niteA22, the con�dence set is emptyi f D̃ = A12A� 1

22 A12 � A11 < 0. Here,
from (3.15) we have

D̃ = b̂ i
0Ŝ� 1b̂ i + n

�
sk[i]0(X0X) � 1sk[i]

�
=t n � 0:

Moving on to the case ofL (q), we proceed by generalizing the single-beta results in Beaulieu et al. (2013).
Because the cut-off point underlying test inversion denotedfn; t n;a above is the same for allq values, an empty
set would result when minq L (q) � fn; t n;a . It can be shown that minimizingL (q) produces the Gaussian-LR
statistic to test the nonlinear restriction which de�nesq, namely (2.11); general derivation are available in e.g.
Gouríeroux, Monfort and Renault (1996).

Theorem 3.2 In the context of(2.7) and the nonlinear hypothesis(2.11) the con�dence set estimate forq
which inverts the statisticL (q) de�ned in(3.2) at thea -level is empty if and only if

L RAPT = minq L(q) = L (q̂RAPT) = ĝ=(1� ĝ) � r̂ � fn; t n;a (3.17)

whereĝ is the minimum non-zero root of C(X; Y) = ( X0X) � 1X0Y(Y0Y) � 1Y0X and

q̂RAPT = �
�
b̂Ŝ� 1b̂0� ĝx22� � 1�

b̂Ŝ� 1â � ĝx21� : (3.18)

In other words, the con�dence set estimate forq is empty if and only if the minimum distance LR-based
Hotelling statistic associated with (2.11) is signi�cant when referred to thefn; t n;a cut-off which can be viewed
as a �nite-sample bound cut-off point for this test. Observe thatr̂ coincides with the minimum root of both
determinantal equations:

jB̂Ŝ� 1B̂0� r (X0X) � 1j = 0; (3.19)

jB̂0� X0X
�

B̂� r Ŝj = 0: (3.20)

Since the underlying eigenvector solution is not unique, we provide a proof for (3.18) in the Appendix which
easily extends to the less restricted(2.12) de�nition and will allow us to link our results to existing related
works namely Kandel (1984) and Kandel (1986), and more recently to Kleibergen (2009). Our approach is
general and relates to important applications of reduced rank regression based inference in econometrics; these
include limited information simultaneous equation and cointegration models; see Dhrymes (1974, Chapter 7),
Davidson and MacKinnon (2004, Chapter 12), or Johansen (1995).We rely on the following matrix algebra
result pertaining to an equation of the form

S(1; z 0)0= 0; jSj = 0; S =
�

S11 S12

S21 S22

�
(3.21)

wherez is them-dimensional unknown given an(m+ 1) � (m+ 1) matrix S, andS11 is a scalar,S12 = S0
21 is

1� mandS22 is m� mand is invertible. As summarized in the Appendix,

ẑ = � S� 1
22 S21 (3.22)

provides a unique solution to this system.
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Theorem 3.3 In the context of(2.7) and the nonlinear hypothesis(2.12), the minimum distance estimators
associated with the criterionL (q; f ) de�ned in(3.1) can be derived as

L UAPT = min
q; f

L(q; f ) = L (q̂UAPT ; f̂ UAPT) = n̂ (3.23)

wheren̂ is the minimum root of
jB̂R̂nB̂0� n(X0X) � 1j = 0 (3.24)

whereR̂n := Ŝ� 1 � Ŝ� 1i n
�
i 0

nŜ� 1i n
� � 1

i 0
nŜ� 1 and

q̂UAPT = �
�
b̂R̂nb̂0� n̂x22� � 1�

b̂R̂nâ � n̂x21� ; (3.25)

f̂ UAPT =
(1; q̂

0
UAPT)B̂Ŝ� 1i n

i 0
nŜ� 1i n

: (3.26)

The formulas in (3.25)-(3.26) coincide with the solution obtained (using another method of proof) by
Shanken and Zhou (2007).

3.3 Finite-sample distributional theory

For some though not all inferential problems considered, we will assume thefollowing mixture distributional
setting:

W = VZ (3.27)

whereV is T � T, unknown and possibly random (in which case it is independent ofZ), andZ is aT � n matrix
of i.i.d. n-dimensional standard normal variablesi.e. if we denote thet-th row ofZ asZ0

t , then

Zt
i:i:d:� N[0; In]: (3.28)

Assumption (3.27) is suf�ciently general and includes variousn-dimensional elliptically contoured distributions
and skew-elliptical distributions. Special cases of (3.27) include the normal distribution

Wt = Zt
i:i:d� N[0; In] (3.29)

and the multivariate Student-t distribution withmdegrees-of freedom [denoted ast(m)].
The hypotheses associated with all statistics we aim to invert as introduced in theprevious section fall

within the uniform linear class [see Dufour and Khalaf (2002), Beaulieu,Dufour and Khalaf (2007) and the
references therein] of the form:

H̃[C; G; D] : CBG= D for knownC, G andD (3.30)

whereC is c� k with rankc; 0 � c � k, andG is n� g; with rankg. The restricted estimators in this case are:

B̃(C; G; D) = B̂�
�
X0X

� � 1C0[C(X0X) � 1C0]� 1(CB̂G� D)(G0ŜG) � 1G0Ŝ; (3.31)

S̃(C; G; D) = Ũ (C; G; D)0Ũ (C; G; D) ; (3.32)

Ũ (C; G; D) = Y � XB̃(C; G; D) ; (3.33)

where
S̃(C; G; D) = Ŝ+ ŜG(G0ŜG) � 1(CB̂G� D)0[C(X0X) � 1C0]� 1(CB̂G� D)(G0ŜG) � 1G0Ŝ: (3.34)
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Commonly used statistics including the LR and Wald criteria [see Berndt and Savin (1977), Gouríeroux,
Monfort and Renault (1995), Dufour and Khalaf (2002) and the references therein] to test̃H[C; G; D] can be
expressed as

L (C; G; D) = T ln
�
jS̃(C; G; D)j=jŜj

�
= � T

l

å
i= 1

ln
�
1� l i(C; G; D)

�
; (3.35)

W (C; G; D) = T tr
�
Ŝ� 1[S̃(C; G; D) � Ŝ]

�
= T

l

å
i= 1

l i(C; G; D)
1� l i(C; G; D)

; (3.36)

wherel = minf c; gg andl 1(C; G; D) � � � � � l n(C; G; D) are the eigenvalues ofS̃(C; G; D) � 1[S̃(C; G; D) � Ŝ].
Clearly,l i(C; G; D); i = 1; : : : ; l coincide with the roots ofS� 1(C; G; D)[S(C; G; D) � G0ŜG] where

S(C; G; D) = G0ŜG+
�
CB̂G� D

� 0�
C(X0X) � 1C0� � 1 �

CB̂G� D
�

: (3.37)

Solving for eigenvalues in question thus requires considering the determinantal equation
�
�(S(C; G; D) � G0ŜG) � l S(C; G; D)

�
� = 0: (3.38)

Theorem 3.4 In the context of(2.7) and the null hypothesis̃H[C; In; D], the LR criterion simpli�es to following
formL (C; In; D) = T ln

� �
�Ic + L̃ (C; In; D)

�
� � where

L̃ (C; In; D) = [ C(X0X) � 1C0]� 1(CB̂� D)Ŝ� 1(CB̂� D)0: (3.39)

The latter Theorem covers the linear hypotheses relevant to the APT introduced above since

HR � H̃[(1; q0); In; 0]; HU � H̃[(1; q0); In; f i 0
n]; H j � H̃[sk[ j ]0; In; b̄ j ]; H0j � H̃[sk[ j ]0; In; 0] (3.40)

leading to
L (q; f ) = L̃

�
(1; q0); In; f i 0

n

�
; L (q) = L̃

�
(1; q0); In; 0

�
; (3.41)

L (b̄ j ) = L̃
�
sk[ j ]0; In; b̄ j

�
; L 0j = L̃

�
sk[ j ]0; In; 0

�
: (3.42)

Furthermore, thePAPT approach amounts to a convenient selection of the postmultiplying matrixG in (3.30).
Via this matrix, our analysis extends to any non-redundant combination of returns one may wish to consider.
The following Theorem establishes the �nite sample distribution for the above eigenvalue based statistics with
emphasis on the role ofG, which was not discussed in (Dufour and Khalaf (2002)).

Theorem 3.5 In the context of(2.7) and under the null hypothesis̃H[C; G; D] in (3:30), the vector of the roots
of (3:38) is distributed like the vector of the roots of

�
�G0W0(M 0[X; C])WG � l G0W0(M [X]+ M 0[X; C])WG

�
� = 0 (3.43)

where G is the orthogonal n� g matrix which includes the eigenvectors associated with the non-zero eigenvalues
of J0GG0J and

M 0[X; C] = X(X0X) � 1C0[C(X0X) � 1C0]� 1C(X0X) � 1X0: (3.44)

Furthermore, under assumption(3:27), the distribution in question follows that of the roots of
�
�Z 0V0(M 0[X; C])VZ � l Z 0V0(M [X]+ M 0[X; C])VZ

�
� = 0 (3.45)

where Z is a T� g matrix of i.i.d. g-dimensional standard normal variables, and is thus invariant to B and J.
For the special case where G= In, i.e. hypothesisH̃[C; In; D], the distribution in question follows that of the
roots of �

�W0(M 0[X; C])W � l W0(M [X]+ M 0[X; C])W
�
� = 0 (3.46)

so invariance to B and J holds imposing or ignoring assumption(3.27).
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Two results emerging from Theorem 3.5 deserve discussion for the problem under consideration.

1. The pivotal characterization (3.45) may be used to obtain �nite samplep-values using the Monte Carlo
test method [seee.g. Dufour and Khalaf (2002) and Dufour (2006)] if the variates underlying V can be
simulated.

2. Under assumption (3.27), the distribution of the roots will depend onC but not onD, and depends onG
only through its rank.

So for the family of mixture distributions (3.27), the fact that null distributions depend onG only through its
rank underlies and generalizes (beyond the deviation form) the invariance property noted by Kleibergen (2009).
The fact that null distributions do not depend onD imply that the null distribution ofL (b̄ j ) does not depend
on b̄ j , so extending the above de�ned test inversion beyond normality preserves its quadrics-based analytic
solution. Indeed, it suf�ces to obtain a simulation-based cut-off point depending on the assumed disturbance
distributions which will be the same for all̄b j . Dependence onq will not be evacuated in the same way,
sinceq intervenes in the null distributions in questions viaM 0[X;C]. These distributions do not depend onf ,
which again supports partialling this parameter out at least from a statistical perspective. Recall however that
f and whether it differs empirically from the hypothesized zero-beta rateg0 [which in our notation is the �rst
component ofq] is an important empirical question in �nance. Simultaneous inference onq and f remains
relevant. Our empirical analysis sheds more light on this matter using a well-known prototypical data set.

To conclude, we review two useful approximations to the above �nite sample distributions. Given normal
errors and if min(c; g) � 2 [Rao (1973, Chapter 8), McKeon (1974)] then

{ 1{ 3 � 2{ 2

cg
1�

�
jŜj=jS̃(C; G; D)j

� 1={ 3

�
jŜj=jS̃(C; G; D)j

� 1={ 3
� F(cg; { 1{ 3 � 2{ 2) (3.47)

{ 1 = T � k� ((g� c+ 1) =2) ; { 2 = ( cg� 2) =4; (3.48)

{ 3 =
�

[(c2g2 � 4)=(c2 + g2 � 5)]1=2 if c2 + g2 � 5 > 0
1 otherwise

: (3.49)

The latter result holds as a reliable approximation when min(c; g) > 2. The cutoffs we use to invert the statistics
considered in section 3 follow from these approximations. We also verify that deviations from thei.i.d. or
normal errors assumption do not lead to notable size distortions in empirically relevant multifactor simulation
designs.

4 Empirical analysis: Fama-French and momentum factors

In our empirical analysis of a multifactor asset pricing model, we conduct: (i)a simulation study calibrated to
observed returns and factors, and (ii) a data-based assessment of factor pricing.

We �rst produce results for industry portfolios for the US, as in Beaulieuet al. (2013). Following recom-
mendations of Lewellen et al. (2010), we also produce results for size portfolios, based on Fama and French's
data base. We consider monthly returns of 25 value weighted and equally weighted portfolios from 1961 to
2010. The benchmark factors are: 1)MKT , the excess return on the market de�ned as the value-weighted
return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from
Ibbotson Associates); 2)SMB (small minus big) de�ned as the average return on three small portfolios minus
the average return on three big portfolios; 3)HML (high minus low) de�ned as the average return on two value
portfolios minus the average return on two growth portfolios; 4)MOM (momentum), the average return on the
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two high prior return portfolios minus the average return on the two low prior return portfolios; 5)RMW (ro-
bust minus weak) operating pro�tability; and 6)CMA (conservative minus aggressive) investment, constructed
from conservative minus aggressive growth of assets for the �scal year. Further information on this data is
provided in the supplementary Appendix.

4.1 Simulation evidence

The experiment reported in this section is designed to assess three issues.First, the above proposed CSs can
be conservative whenk is large, so we aim to document their coverage properties. Second, we study the
performance of the inverted proposed tests when errors are fat-tailed.Third, we assess the implications of
imposing and relaxing tradability restrictions; see Lewellen et al. (2010) andPenaranda and Sentana (2016)
for theoretical and practical discussions in this regard. To the best of our knowledge, an identi�cation-robust
assessment of this important equilibrium-based restriction is as yet unavailable.

We consider an empirically relevant design based on the above data set and the Fama-French three factor
model [with MKT, SMB and HML] in which returns are generated by (2.1) with(2.2) or (2.3). We calibrate
designs using observed data on value-weighted portfolios covering the full sample [n = 12 andT = 624], and
the last sub-period [n = 12,T = 120]. The full sample exercise allows us to analyze our results relative to the
literature, whereas the shorter sample documents performance as it appliesto a standard sub-period analysis.

The factors are drawn as normal with means and variance/covariance calibrated to match the considered
sample. We set the factor loadings and the variance/covariance of disturbances to their OLS estimated coun-
terparts for the observed sample.J is obtained as the Cholesky root of this variance/covariance matrix. For
conformity, we also compute the cross-sectional two-pass OLS estimates of the zero-beta rate and risk price
[denotedq � 0], and their companion standard errors [denotedSE(q � 0)]. We use these cross-section estimates to
calculateq as in Shanken and Zhou (2007) and from there on, to initialize the simulations underlying the size
study. To assess power, we set the parameter under the alternative as

q � = q � 0 + step� SE(q � 0) (4.1)

wherestepmeasures departure from the null hypotheses; the intercept termgc is calibrated in the same way. Of
course, for our empirical analysis, we do not compute con�dence intervals using OLS estimates nor Wald-based
MLEs for that matter. All reported intervals invert the Hotelling-tests we proposed above. The cross-sectional
OLS estimates from the training samples, despite their imperfections, are used as well-understood prototypical
metric to initialize our data generating processes. For space considerations, the simulation values are not
reported here but are available from the authors upon request.

These settings are maintained for all analyzed tests, except in one case in which we provoke under-
identi�cation by �xing the MKT betas jointly to zero or one. We report test sizes as a worst scenario check to
con�rm that no over-rejections occur despite identi�cation failure. The disturbancesWt are generated, in turn,
asi.i.d. normal, multivariate Student with 5 degrees of freedom, and multivariate GARCH using in this case
the data generating process

Wt = G1=2
t Zt ; Gt = ( 1� m1 � m2)In + m1Wt� 1W

0

t� 1 + m2Gt� 1 (4.2)

whereZt are uncorrelatedn-dimensional standard normal variables, so in this case the conditional variance of
JWt is given bySt with

St = JGtJ0= ( 1� m1 � m2)JJ0+ m1JWt� 1W
0

t� 1J0+ m2JGt� 1J0 (4.3)

= ( 1� m1 � m2)JJ0+ m1JWt� 1W
0

t� 1J0+ m2St� 1
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Table 1: Designs underlying reported �gures

Empirical True Data Generating Process
Model R 1 Tradable R 1 Non-Tradable

Inverted Statistic Inverted Statistic
RAPT PAPT UAPT RAPT PAPT UAPT

R 1 L (q) L D (q) L (q; f ) L (q) L D (q) L (q; f )
Tradable Fig. 1 & 7 NA NA Fig. 6 NA NA

Inverted Statistic Inverted Statistic
RAPT PAPT UAPT RAPT PAPT UAPT

R 1 L (q) L D (q) L (q; f ) L (q) L D (q) L (q; f )
Non-Tradable NA Fig. 3 Fig. 2 & 8 NA Fig. 5 Fig. 4

Note – This table summarizes designs and methods in reported �gures below. TheRAPT L (q) [in (3.2)] andUAPT L (q; f ) [in (3.1)]
statistics, whereR andU stands for “restricted” and “restricted”, impose and relax the assumption thatR 1 is tradable, respectively. The
PAPT L D (q) statistic, whereP stands for “partialling-out”, denotesL (q) applied to a system onn� 1 returns in deviation fromrn. In
this case, all factors are assumed non-tradable in estimating and testing themodel but the resulting unrestricted constant is evacuated
from the statistical objective function as it is applied tor i � rn, i = 1; : : : ; n� 1:

which corresponds to a special case proposed by Engle and Kroner (1995). We use(m1; m2) = ( :15; :80). The
considered inference methods arenot corrected for departures from thei.i.d. assumption nor from normality.
Tests and con�dence intervals in what follows are at the 5% and 95% level.We report empirical rejections over
10000 replications for each parameter. In the results below,R 1 is the MKT factor.

The design of the simulation experiment is outlined in Table 1, whereas the results are summarized in
Figures 1-8. In each �gure, we report: (i) under the heading “True Model”, the speci�cation used to generate
data, and (ii) under the heading “Empirical Model”, the speci�cation that was considered for estimation and
inference. The true and empirical speci�cations differ only regarding the treatment ofR 1, as summarized in
table 1. Figure 7 replicates the design in 1 with a smaller sample size; we do not replicate all designs for space
considerations, so �gure 7 aims to broadly illustrates sample size issues. Thedesign underlying �gure 8 differs
from the rest in that it assesses our proposed tradability test; further discussions below will clarify the design
and its implications. In all �gures, the parameters corresponding to the null hypothesis are identi�ed via a
dashed vertical line. Results can be summarized as follows. In the Supplementary Appendix, we report the
proportion of empty joint con�dence sets in the experiments underlying each�gure, as well as the unidenti�ed
experiment results.

1. Deviations from normality.In all designs, deviations from normality are not distortive in the following
sense: no over-rejections occur under the null hypothesis when thei.i.d. normal assumption is violated. Recall
that tests rely on the above de�ned F critical points regardless of the distributions we use to draw simulated
samples. This result is noteworthy given the prevalence of multivariate GARCH or Student-t type assumptions
on disturbances in theoretical and empirical asset pricing work.

We also �nd that power results with GARCH-based designs dominate the Gaussian based ones which in turn
dominate the Student-t case. On balance, a maximum of around 10% difference in power is observed between
power curves, respectively. Power costs resulting from Student-t errors are expected, since our tests rely on
least-squares. Power results with GARCH deserve discussion. Recall that test sizes are controlled even though
GARCH was not accounted for. We do not advocate hasty conclusions suggesting that GARCH enhances test
performance. Instead, we �nd that the GARCH case underscores the practical usefulness of our tests in realistic
settings: most likely, GARCH adjusts the scale of left-hand side simulated variates relative to the model's
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covariates, to better match the considered initializing parameters which rely on observed data here. For further
insight on single equation least-squares based inference in the presence of ARCH, see (Hamilton (2010)). Both
Student-t and GARCH errors do not seem to affect power ranking relative to factor informativeness.

2. Size of tests, and identi�cation.Empirical rejections under the null hypothesis do not exceed 5% in all
cases, including the under-identi�ed case (reported in the supplementaryAppendix). To quantify identi�cation
in the baseline design, refer to table 2 [reported in our empirical section below] which summarizes joint factor
signi�cance tests7 and con�dence sets for factor loadings, using the last sub-period of our dataset. This is
relevant because these loadings drive the simulated design for our short sample (withT = 120) which we view
as a “stress test” for our methodology. The main point we aim to underscorefrom this table as it relates to
our simulation design, is the following. While the (unrestricted) intercept is notsigni�cant at 5% using the
Hotelling test, all factors are signi�cant at 5%. Nevertheless, all con�dence intervals for the SMB beta cover
zero, whereas a small proportion of the intervals for the MKT or HML loadings do not cover zero. Thus factors
are not necessarily redundant, yet joint information may not be strong across portfolios with shorter samples.
This turns out to matter as we will see below.

Although not obvious on �rst sight, �gure 8 contains a size study on our unrestricted test, when applied in
deviation fromR 1. In this case, the intercept will measure deviations between the risk price ofR 1 [g0 = qMKT ]
and the zero beta rate [gc], which will assess the tradable factor assumption. In this design, the null hypothesis
corresponds tog0 = qMKT = gc i.e., R 1 is tradable. Departures from the null hypotheses varygc keepingg0
constant. Sinceg0 = qMKT is kept constant throughout, the curves corresponding toqMKT describe size and
not power. We thus see that size is well controlled again, a point worth emphasizing since this test is new to the
(identi�cation-robust) literature.

3. Power of tests, general �ndings.Except with the under-identi�ed case [refer to the Supplementary
Appendix], all tests display good and empirically relevant power. Recall that a joint three (or four) parameter
test is inverted here, which con�rms that the bene�ts of simultaneous inference is not offset by power losses
unless identi�cation fails completely.

Comparing �gures 1 and 7, we see that tests are powerful on all parameters even when the sample size
drops from 624 to 120. Strikingly, power curves do not differ much between the large and small samples.
In particular, and though information on other factors suffers to some extent, power on the HML price with
T = 120 almost matches theT = 624 experiment. This leads us to analyze with further detail how power
differs across considered factors; refer to point 4, below.

The unrestricted and partialled-out tests perform exactly the same for inference on risk price, a result
which lines up with the above theory [refer to (3.11)-(3.14)]. The main advantage of our test compared to
the partialled-out one which relates to an asymptotic test proposed by (Kleibergen (2009)) is the information
we provide on the model's intercept. See in particular �gure 4: whereas partialling-out evacuates this parame-
ter, our test provides tremendous power on this fundamental coef�cientwithout sacri�cing any information on
the model's risk price. Further discussion of restricted versus unrestricted testing is discussed in point 5, below.

4. Power of tests, across factors.Broadly, tests are more informative on one of the three factors relative to
the others. Given the historical debate on MKT beta, comparing �gures 4 and 5 to �gures 1 and 7 is particularly
enlightening. The former imply that the MKT risk is harder to test than the remaining factors. In contrast, tests
on the zero-beta rate as depicted in the latter seem more powerful than thoseon SMB and HML.

In all four �gures true and empirical assumptions onR 1 coincide and conformable tests are applied. Thus,
both of these alternative �ndings may initially appear plausible. However, whereas �gures 4 and 5 relax trad-
ability of R 1, �gures 1 and 7 replicate empirical consensus onR 1, i.e. that it is a tradable factor. This under-

7Industry portfolios are used although (unreported) results with size factors convey qualitatively similar information. With reference
to market betas, we assess joint deviations from one since the market factor is assumed tradable in this design, in which case bunching
up at one is more relevant to gauge identi�cation.
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scores the usefulness of our restricted test which is depicted in �gures 1and 7, which in turn leads us to further
analyze the effects of restricting versus assessing the tradable factor assumption; refer to point 5 below.

Figures 1 and 7 also suggest that SMB is the least informative factor. Theabove comments warning that
con�dence sets on the SMB loading all cover zero apply in this case. Relative power ranking are thus clearly
driven by the relative identi�cation strength of SMB in this design, which we emphasize is based on observable
factors.

5. Power of tests, restricted versus unrestricted.Figure 8 (with the exception of results onqMKT as noted
above) depicts the power of our proposed test which assesses thatR 1 is tradable, or formally whetherg0 =
qMKT = gc. Departures from this null hypotheses varygc keepingg0 constant. The power on non-market risk
prices is unaffected relative to the previous designs, whereas we �nd very good power ongc � g0. Though
ex-ante decisions regarding some factors is possible, most cross-sectional based works in asset pricing tend to
leave the intercept unrestricted. Our approach provides an identi�cation-robust assessment of tradable factor
restrictions, which, to the best of our knowledge, is a new and useful contribution.

Figure 2 documents the consequences of neglecting this assumption when it holds. Comparing power curves
between �gure 1 and �gure 2, we �nd that the risk price ofR 1 bares all the cost as power is much weaker in
�gure 2 than in �gure 1, which results of course from disregarding a relevant restriction. Our design suggests
that resulting power losses are sizable: the risk price of a tradable factoris harder to pin-down even in identi�ed
contexts when an unrestricted cross-sectional constant is maintained, which quanti�es the consequences of an
important “pitfall” raised in particular by Lewellen et al. (2010) and more recently though in a GMM context by
Penaranda and Sentana (2016). In contrast to the traditional literature,our �ndings are based on methods that
are robust to the identi�cation of all factors which provides new insights intothe historical debate surrounding
the role of the MKT factor in multi-factor models.

To further interpret the evidence on intercept tests, note that in the designunderlying �gure 2, asgc is taken
away from its value under the null hypothesis,g0 follows conformably since the true model throughout imposes
g0 = gc (hence the need for �gure 8, to assess the test for inference on this discrepancy). So results forg0 =
gc can be interpreted as size [despite the misspeci�cation], whereas tests ongc con�rms the excellent power
properties we noted in commenting on �gure 4. Figure 3 illustrates the limitations of partialled-out tests: power
on all coef�cients, again, coincides exactly with that of our unrestricted test as depicted in �gure 2, which we
noted to be way lower that in �gure 1 for inference regardingR 1. As an added major cost, partialling-out takes
away all sources of information on the validity of tradability assumptions, whose usefulness we quanti�ed via
�gure 8.

Figure 6 illustrates the consequences of imposing the traded factor assumption when it does not hold. Here,
what is indicated as a parameter value under the null is in fact a false null, since the model falsely imposes
a restriction that does not hold. An important contrast with �gure 2 in which case we found that inference
regardingR 1 is only affected, here results show that spurious inferenceon all model parameters results, with
notable size distortions as empirical rejections exceed 60%. A important cautionary remark about this �gure
(refer to the Supplementary Appendix for further details), the rejections we depict actually correspond to empty
con�dence sets in almost all simulations. This means that our companion model checks are conveying evidence
of misspeci�cation, with very good power. This �nding leads to clear prescriptions for empirical work: de-
spite the importance of imposing traded factor assumption, their empirical validation remains a must as serious
distortions will result otherwise. This reinforced the usefulness of our proposed intercept test, and more impor-
tantly, the usefulness of our built-in speci�cation checks which will return empty sets when the model deviates
importantly from asset pricing equilibrium relations.

6. Size and power, and empirical results.Taken collectively, our simulation results suggest that the un-
bounded con�dence sets we observe empirically as reported in section 4.2are most likely driven by weak
factors. Inference problems are thus highly likely even outside the high dimensional settings analyzed for ex-
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ample by Harvey et al. (2016) wherek is by far larger than 5, the maximum number we consider. Our results
with a small number of commonly used factors also suggest that our con�dence sets in which an identi�ca-
tion check is “hard-wired” are extremely valuable in practice, since they willallow the researcher to qualify
non-rejections. An unbounded con�dence set guards the researcher from misreading nonsigni�cant tests as
evidence in favour of models on which data is not informative. Our analytical projection method thus provides
an invaluable tool because it easily and surely con�rms an unbounded solution, in contrast to e.g. numerical
searches that are typically subject to precision, convergence and tractability constraints. On balance, results
with both sample sizes illustrate the worth of our analytical F-based motivation for relying on our proposed
analytical test inversion formula.

4.2 Empirical results

In the following discussion, signi�cance refers to the 5% level and the restricted test refers to treating MKT as
a tradable factor. Our empirical analysis builds on the prescriptions of Lewellen et al. (2010). From a general
standpoint, our results can be summarized as follows.

Risk premiums are better identi�ed with industry portfolios than with size portfolios. This result is not
driven by the number of the portfolios in question. In fact, when the whole set of portfolios is used jointly
following Lewellen et al. (2010, Prescription 1), all considered unconditional models are rejected. Although
noteworthy and consistent with the discussion in Lewellen et al. (2010), thelatter test may pose an unconven-
tionally high hurdle for goodness of �t. We thus do not aim to overemphasizethese rejections. Instead, we view
these results as con�rming the power of our tests asn increases relative toT.

An alternative and more fundamental argument is that stacking portfolios increases dispersion of factor
sensitivities; in contrast, size sorted portfolios yield much more clustered betas than their industry counterparts,
which ill-conditions the rank of the associatedbetamatrix thus compromising identi�cation of risk price. Sim-
ilar distortive clustering results with value weighted portfolios whether we useindustry or size sorting, whereas
size sorted value-weighted portfolios are the least informative in our considered tests. This is illustrated in table
2 which reports con�dence sets for factor loading based on invertingL (b̄ j ) in (3.8), as well as zero-parameter
test based onL 0j (3.6) under the heading Hotelling, corresponding to the last sub-period of our dataset with
industry value-weighted portfolios.8 Though all factors seem relevant via signi�cant Hotelling test, a small
number of con�dence intervals for MKT excludes one, one of the intervals for HML excludes zero and all in-
tervals for SMB cover zero, which suggests severe clustering. For thispurpose, we base the bulk of our analysis
on equally weighted industry portfolios.

The Fama-French �ve factor model is severely under-identi�ed even viaour most informative checks,
namely our restricted test, industry portfolios, and over the whole sample. Since Fama and French (2015)
argue that HML in this model is unidenti�ed, we repeat our analysis excluding this factor.

Analyzed results are reported in six tables; the appendix includes results with value weighted portfolios and
further results with weaker identi�cation evidence for completion.

Results imposing tradable MKT differ importantly from their unrestricted counterparts. Compare for ex-
ample Panel A to Panel B of table 3, and consider �rst the 1971-1980 and1991-2000 subperiods in which we
reject the three-factor model via our restricted test (of Panel A). For further reference, these subperiods will
be denoted as theatypicalones, to underscore this rejection. In contrast to the restricted test, our unrestricted
inference (in Panel B) fails to reject the model in these subperiods and con�rms that: (i) MKT is priced in both
cases, (2) HML is not priced whereas SMB is priced only in the 90s.

Does it seem reasonable to retain a model that ignores a key property of the market factor? With reference
to Lewellen et al. (2010, Prescription 2), the unrestricted test seems a low hurdle to meet unless (among other

8We discussed these results above as they relate to our simulation design.
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Figure 1: Monte Carlo study: tests imposing tradable market factor

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = g0(1� bi1) � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = g0(1� bi1) � g0
F biF

RAPT: Inverted StatisticL (q); q = ( g0; g0
F )0

Note – Dashed vertical lines denotes null parameter values. Empirical rejections pertain to 5% tests associated with 95% con�dence
sets: if the 95% set does not cover the null value or is empty, the reportedtest is considered signi�cant. Parameters are calibrated to
OLS cross-sectional two-pass estimates from a training sample based onindustry portfolios, Fama-French factors and monthly data,
1961-2010 henceT = 624. See table 1 for further details on design and inverted tests. When oneunicolor curve is depicted whereas
the legend refers to three cases, this implies that all visually coincide.
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Figure 2: Monte Carlo study: joint tests, market factor tradable assumed non-tradable

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = g0(1� bi1) � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = gc � g0bi1 � g0
F biF

UAPT: Inverted StatisticL (q; f ); q =
�
g0; g0

F

� 0; f = gc or (gc � g0)
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Note – See notes to �gure 1 and table 1. Results under the headinggc � g0 are obtained by executingL (q; f ) on returns in deviation
from R 1 in which case tests on riskq are unchanged and tests onf provide inference ongc � g0, which is zero throughout this design
for all “steps” given the considered true model.

explanations) the zero beta rate differs anomalously from the risk-free rate. Our inference on the cross-sectional
intercept can inform in this regard, in contrast to the unrestricted test [adopted in particular by Kleibergen
(2009)] that subtracts this intercept away. Let us thus refer to the upper Panel of table 5. For the subperiods in
question, we �nd that despite notable estimation uncertain, the con�dence set on g�

c does not cover zero which
con�rms thatg0 signi�cantly differs fromgc. This discrepancy seems to be driving the rejection of the tradable
MKT model. Interestingly, we are not able to refute a zerog�

c outside these subperiods.
Results with the Carhart model provide further insights on the above anomalous interpretation. Comparing

the upper to the lower panels of table 4, we �nd that the unrestricted test is completely uninformative as the
con�dence sets are utterly wide. In contrast, with a tradable MKT and again, despite evidence of estimation
uncertainty, we �nd that MOM is priced only in the 1971-1980 and 1991-2000 sub-periods and these are the
only subperiods in which the restricted three-factors model is rejected whereasg0 signi�cantly differs fromgc.
The MKT risk itself is no longer priced in these subperiods, which stands in sharp contrast with our unrestricted
three-factor based evidence. In addition, SMB is priced in the presenceof MOM in both subperiods, whereas
it is priced in our unrestricted three-factor model only in the nineties.

Divergences between restricted and unrestricted inference also arisewhen the restricted three-factors model
is not rejected. In particular, in the three factors model, the restricted tests con�rm that SMB and HML are both
priced in the 1960s whereas the unrestricted tests cover zero. Similarly, HML appears priced via the restricted
test in 1981-90 and not priced using the unrestricted counterpart, and the same holds for SMB in 2000-2010.
Overall, aside from the market and unless the restricted model is rejected, all factors that are priced via the
restricted test are no longer priced when the tradable MKT restriction is relaxed. Referring to the upper Panel
of table 5 reveals no basis to refuteg0 = gc when the restricted model is not rejected, and as emphasized above,
MOM is not priced in these subperiods as may be checked again from the upper Panel of table 4.

The above interpretation of the momentum effect may be quali�ed as we interpret results of the Fama-
French model with SMB, RMW and CMA over and above the MKT factor. As with the Carhart model, the
unrestricted test is completely uninformative yet the model passes our restricted test over all subperiods. The
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Figure 3: Monte Carlo study: partialled-out tests, market factor tradable assumed non-tradable

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = g0(1� bi1) � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = gc � g0bi1 � g0
F biF

PAPT: Inverted StatisticL (q) on r i � rn with q = ( g0; g0
F )0

Note – See notes to �gure 1 and table 1. The dashed vertical line denotes thevalue of the given parameter under the null.
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Figure 4: Monte Carlo study: joints tests, relaxing tradable market factor

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = gc � g0bi1 � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = gc � g0bi1 � g0
F biF

UAPT: Inverted StatisticL (q; f ); q =
�
g0; g0

F

� 0; f = gc

Note – See notes to �gure 2.
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Figure 5: Monte Carlo study: partialled-out tests, relaxing tradable marketfactor

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = gc � g0bi1 � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = gc � g0bi1 � g0
F biF

PAPT: Inverted StatisticL (q) on r i � rn whereq = ( g0; g0
F )0

Note – See notes to �gure 3 and table 1.
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Figure 6: Monte Carlo study: test imposing tradable market factor when non-tradable

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = gc � g0bi1 � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = g0(1� bi1) � g0
F biF

RAPT: Inverted StatisticL (q); q = ( g0; g0
F )0

Note – See notes to �gure 1.
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Figure 7: Monte Carlo study: tests imposing tradable market factor, performance with 10 years of data

n = 12; T = 120 r i = ai i T + R 1bi1 + F biF + ui

True model ai = g0(1� bi1) � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = g0(1� bi1) � g0
F biF

RAPT: Inverted StatisticL (q); q = ( g0; g0
F )0

Note – See notes to �gure 1 and table 1. The training sample used to generatesimulation parameters is restricted to the last 10 years of
data.
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Figure 8: Monte Carlo study: joint tests, market factor tradable assumed non-tradable

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

True model ai = gc � g0bi1 � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

Empirical model ai = gc � g0bi1 � g0
F biF

UAPT: Inverted StatisticL (q; f ); q =
�
g0; g0

F

� 0; f = ( gc � g0)

Note - See notes to �gure 1 and table 1. Results are obtained by executingL (q; f ) on returns in deviation fromR 1. Under the null, we

holdgc = g0, and under the alternative,gc moves away from the true value, whereasg0 does not.
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following discussion thus focuses on the restricted model outcomes in table 6.Interestingly, results for the
atypical 70s and 90s stand in sharp contrast with those we obtained using Carhart's model: MKT and one of the
RMW and CMA factors are priced whereas SMB is not; instead, recall thatSMB and MOM are jointly priced
with the Carhart model, whereas the MKT factor was not.

The obvious question is, then, whether observed factors represent risks or anomalies. Yet any interpretation
of our �ndings in this regard is hasty, given our focus thus far on the atypical subperiods. Outside these
subperiods, interpretations in any direction are severely hampered by themore pernicious identi�cation failures
we observe therein. Indeed, over and above MKT and SMB, the additionof MOM and HML yields completely
uninformative sets (the real line) prior to the 70s and so does the addition ofRMW and CMA. In the 80s,
the Carhart model is uninformative whereas MKT and RMW are priced despite unbounded sets. In contrast,
post 2000, SMB is the only priced factor in the Carhart model whereas thefour-factor Fama-French model is
completely uninformative.

In sum, four key results are worth emphasizing. First, the three Fama-French factors are con�rmed to be
priced concurrently only before 1970. From there on, the factors areeither: (i) jointly rejected in the sense
that anomalies remain despite some evidence of pricing, or (ii) are weakly supported, in the following sense:
we �nd no clear indication on which among the three is priced or not. Second,with regards to the historical
debate on anomalies9, we do not �nd convincing and uniform evidence favoring any factor relative to MKT.
Third, MOM is not necessarily irrelevant despite its adverse effect on identi�cation broadly, and may possibly
proxy an outstanding anomaly relative to the three-factors model in the 70s and 90s atypical subperiods. Fourth,
heterogeneity is not suf�cient to distinguish a priced momentum anomaly from pro�tability or investment as
presumably non-diversi�able risk drivers.

Size portfolios preserve some of the above �ndings, though globally, evidence weakens as identi�cation is
visibly weaker. The latter �nding reinforces the argument in Lewellen et al.(2010, Footnote 1), namely that
size and book-to-market sorted betas on MKT are close to one, a fact that seems to empirically endure since
Fama and French (1993).

Notwithstanding almost inevitable resulting under-identi�cation, table 7 broadlyunderscores the following,
relative to industry portfolios. First, the restricted three-factor model is nolonger rejected in the 70s and 90s;
in fact it passes our test overall. Interestingly, the three factors are jointly priced in the 70s, whereas in the 90s,
the only priced factor is MKT. Second, in all subperiods expect the 80s and 2000s in which our con�dence sets
on MKT risk are the real line, MKT is priced. Third, prior to the 90s, HML is always priced. Fourth, the data
is not informative post-2000s, a result shared to some extent with industrysorts.

The addition of momentum provokes under-identi�cation since almost all con�dence sets for risk prices
are the real line, and so does unrestricting the intercept with and without momentum (the latter results are not
reported for space consideration). The same holds when adding RMW and CMA, with and without HML; a
sample of these results is reported in the Appendix.

Further results including conditional models are reported in the supplementary appendix. Results con�rm
that the identi�cation problems in this literature are not solved by standard conditioning, which seems instead
to exacerbate complications.

5 Conclusion

One of the key goals of asset pricing is to identify factors that drive asset returns and are associated with risk
premiums. This paper contributes to this literature via an identi�cation-robust methodology to assess pricing,

9See Campbell et al. (1997, Chapters 5 and 6), Fama and French (2004), Perold (2004), Campbell (2003), Sentana (2009) and the
recent insight in Fama and French (2015).
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Table 2: Simultaneous con�dence sets for factor loadings

2001-2010, Value-Weighted Industry Portfolios

Eq. Intercept MKT -1 SMB HML

1 [-.0062,.0129] [-.5969,-.1868] [-.4630,.2560] [-.0498,.5577]
2 [-.0214,.0180] [-.0563,.7905] [-.2121,1.2723] [-.0808,1.1737]
3 [-.0079,.0127] [-.0405,.4033] [-.1699,.6082] [-.0701,.5874]
4 [-.0145,.0298] [-.6664,.2849] [-1.0358,.6319] [-.4649,.9445]
5 [-.0063,.0147] [-.4489,.0022] [-.5510,.2397] [-.0700,.5982]
6 [-.0095,.0113] [.1698,.6156] [-.0586,.7223] [-1.2226, -.5623]
7 [-.0147,.0148] [-.2125,.4201] [-.9030,.2062] [-.5811,.3563]
8 [-.0146,.0188] [-.7735,-.0573] [-.7852,.4705] [-.2415,.8196]
9 [-.0102,.0113] [-.4224,.0396] [-.1606,.6493] [-.2435,.4409]
10 [-.0118,.0122] [-.5823,-.0659] [-.8394,.0660] [-0.3373,.4278]
11 [-.0156,.0062] [-.1480,.3206] [-.4751,.3463] [.2860,.9802]
12 [-.0103,.0077] [-.1198,.2679] [-.3047,.3750] [-.0969,.4776]

Hotelling 1.2131 16.9573 5.4253 23.2133

p-value .284 .000 0.000 0.000

Note – See notes to table 3 for the de�nition of the considered sample. Intervals reported are the 95% joint (across equations) con�dence
sets for the coef�cients (in turn) of each portfolio regression numbered 1-12. The inverted test in each case isL (b̄ j ) de�ned in (3.5)
to testH j (2.20). The Classical Hotelling joint signi�cance test with conforming p-value is reported at the bottom of each column to
assess each ofH0j (2.21). j = 1 provides joint inference on the unrestricted regression intercepts, and as the unrestricted regression
is in deviation from the tradable factor, here MKT,j = 2 provides joint inference on market betas in deviation from one, andj = 3; 4
provide inference, in turn, on SMB and HML betas. Con�dence sets in bold are those that do not cover zero.
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Table 3: Con�dence sets for risk price: industry portfolios and three factor model

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL A q = ( g0; g0
F )0= ( qMKT ; qSMB; qHML )0

MKT SMB HML

� 10� 4 F qMKT F qSMB F qHML

61-70 38* [-437,-55] 33* [-17,14] 53* [-46,41]
71-80 30 ? 43 ? 33 ?

81-90 44*
]� ¥ ; � 194]
[ [ 1156,¥ ]

-16 R 56*
]� ¥ ; -115]
[ [ 611,¥ [

91-00 103 ? 4 ? 29 ?
00-10 14 [-79,245] 57* [-146,3] 40 [-41,178]

r i � i Tgc = ( R 1 � i Tg0) bi1 +
�
F � i Tg0

F

�
biF + ui ; ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ); gc partialled-out

MKT SMB HML

� 10� 4 F qMKT F qSMB F qHML

61-70 38* [-642, -14] 33 [-11, 83] 53 [-64, 74]
71-80 30* [-621, -54] 43 [-26, 158] 33 [-137, 160]

81-90 44*
]� ¥ ; -198]
[ [ 807,¥ [

-16 R 56 R

91-00 103*
]� ¥ ; -432]
[ [ 3087,¥ [

4*
]� ¥ ; -1499]

[ [ 97,¥ [
29

]� ¥ ; -281]
[ [ -24,¥ [

00-10 14 [-100, 1226] 57 [-1089, 66] 40 [-137, 192]

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 12 equally weighted
(EW) industry portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML). Con�dence sets are at the 5%
level. F is the factor average over the considered time period;q captures factor pricing as de�ned in (2.15). * denotes evidence of
pricing at the 5% signi�cance level interpreted as follows: given the reported con�dence sets, each factor is priced if its average is not
covered. In Panel A, the inverted test isL (q) de�ned in 3.2. This test follows ourRAPT approach whereR stands for “restricted”
implying that tradable factor constraints are imposed, here onR 1, in estimating and testing the model. In Panel B, the inverted test
L (q) is applied on a system onn� 1 returns in deviation fromrn. This test follows ourPAPT approach whereP stands for “partialling-
out” implying that all factors are assumed non-tradable but the resulting unrestricted constant is evacuated from the statistical objective
function as it is based onr i � rn, i = 1; : : : ; n� 1.
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Table 4: Con�dence sets for risk price: industry portfolios and four factor model

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

q =
�
g0; g0

F

�
=

�
qMKT ; qSMB; qHML ; q MOM

�

MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38 R 33 R 53 R 73 R
71-80 30 [-300, 232] 43* [-62, -17] 33 [-87, 111] 113* [-333, 98]
81-90 44 R -16 R 56 R 66 R
91-00 103 [-617, 123] 4* [-387,-20] 29 [-267,36] 112* [-995, -45]
00-10 14 [-124, 258] 57* [-212,5] 40 [-52, 204] -3 [-554, 129]

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; q MOM); gc partialled-out

MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38 R 33 R 53 R 73 R
71-80 30 [-654, 316] 43 [-53, 166] 33 [-143, 230] 113 [-499, 286]
81-90 44 R -16 R 56 R 66 R

91-00 103
]� ¥ ; 112]
[ [ 1959,¥ [

4
]� ¥ ; -764]
[ [ -344,¥ [

29 R 112 R

00-10 14 [-148, 1552] 57 [-1502, 75] 40 [-172, 227] - 3 [-1547, 108]

Note – See notes to table 3. The considered model is the four factor case with market (MKT), size (SMB), book-to-market (HML) and
momentum (MOM).
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Table 5: Industry portfolios, testing the traded factor assumption

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML )

CTE MKT SMB HML MOM

� 10� 4 g�
c F qMKT F qSMB F qHML F q MOM

61-70 [-8, 101] 38* [-777, 9] 33 [-17, 94] 53 [-81, 82] - -
71-80 [5, 217] 30* [-715, -35] 43 [-34, 178] 33 [-179, 173] - -

81-90 R 44*
]� ¥ ; -164]
[ [ 707,¥ [

-16 R 56 R - -

91-00
]� ¥ ; -898]
[ [ 150,¥ [

103*
]� ¥ ; -365]
[ [ 1950,¥ [

4*
]� ¥ ; -964]
[ [ 58,¥ [

29 R - -

00-10 [-1876, 115] 14 [-121, 2768] 57 [-2461, 84] 40 [-254, 245] - -

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q =
�
g0; g0

F

�
=

�
qMKT ; qSMB; qHML ; q MOM

�

CTE MKT SMB HML MOM

� 10� 4 g�
c F qMKT F qSMB F qHML F q MOM

61-70 R 38 R 33 R 53 R 73 R
71-80 [-13, 224] 30 [-803, 430] 43 [-62, 182] 33 [-186, 260] 113 [-586, 375]
81-90 R 44 R -16 R 56 R 66 R

91-00
]� ¥ ; -714]
[ [ -111,¥ [

103
]� ¥ ; 157]
[ [ 1590,¥ [

4
]� ¥ ; -600]
[ [ -407,¥ [

29 R 112 R

00-10 [-3548, 135] 14 [-170, 5023] 57 [-4838, 94] 40 [-398, 323] - 3 [-4568, 129]

Note – See notes to tables 3 and 4. The inverted test isL (q; f ) is de�ned in (3.1). This test follows ourUAPT whereU stands for
“unrestricted” implies that factors are assumed non-tradable in estimatingand testing the model. The test is applied onr i � R 1 so
inference onf allows to assess whethergc = g0: the hypothesis thatR 1 (here, MKT) is traded is rejected at the 5% level when the
con�dence set onf excludes zero.
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Table 6: Con�dence sets for risk price: industry portfolios and �ve-factor model, excluding HML

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL A q = ( g0; g0
F )0= ( qMKT ; qSMB; qRMW; qCMA)0

MKT SMB RMW CMA

� 10� 4 F qMKT F qSMB F qRMW F qCMA

63-70 28 R 57 R 2 R 22 R

71-80 30*
]� ¥ ; -79]

[ [ 34937,¥ [
54

]� ¥ ; -1511]
[ [ -79,¥ [

5*
]� ¥ ; -20138]

[ [ 14,¥ [
25

]� ¥ ; 210]
[ [ 14260,¥ [

81-90 44*
]� ¥ ; -78]
[ [ 82,¥ [

-20
]� ¥ ; -1]
[ [ 42,¥ [

39*
]� ¥ ; -75]
[ [ 95,¥ [

55
]� ¥ ; -143]

[ [ -6,¥ [
91-00 103* [-1568, 85] 3 [-277, 237] 32 [-118, 362] 30* [-591, -8]
00-10 14 R 65 R 44 R 35 R

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; ; i = 1; : : : ; n

PANEL B q =
�
g0; g0

F

�
= ( qMKT ; qSMB; qRMW; qCMA); gc partialled-out

MKT SMB RMW CMA

� 10� 4 F qMKT F qSMB F qRMW F qCMA

63-70 28 R 57 R 2 R 22 R

71-80 30*
]� ¥ ; -26]
[ [ 1108,¥ [

54
]� ¥ ; 167]
[ [ 282,¥ [

5
]� ¥ ; -1041]
[ [ -118,¥ [

25
]� ¥ ; 202]
[ [ 664,¥ [

81-90 44 R -20 R 39 R 55 R

91-00 103
]� ¥ ; 105]
[ [ 1790,¥ [

3
]� ¥ ; -662]
[ [ -238,¥ [

32 R 30 R

00-10 14 R 65 R 44 R 35 R

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 12 equally weighted (EW)
industry portfolios as well as US factors for market (MKT), size (SMB), pro�tability (RMW), and investment (CMA). Results in Panel
A rely on ourRAPT approach, and those in Panel B or itsPAPT counterpart; see notes to notes to table 3 for further de�nitions.
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Table 7: Con�dence sets for risk price: size portfolios

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

q = ( g0; g0
F ) =

�
qMKT ; qSMB; qHML

�

MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38*
]� ¥ ; -256]
[ [ 221,¥ [

33
]� ¥ ; -87]

[ f [ -71,¥ [g
53*

]� ¥ ; -128]
[ [ 1008,¥ [

- -

71-80 30*
]� ¥ ; -229]
[ [ 25121,¥ [

43*
]� ¥ ; -253]
[ [ 9972,¥ [

33*
]� ¥ ; -30714]

[ [ 639,¥ [
- -

81-90 44 R -16 R 56*
]� ¥ ; -881]
[ [ 975,¥ [

- -

91-00 103* [-14492,72] 4 [-732,649] 29 [-3055,886] - -
00-10 14 R 57 R 40 R - -

r i � i Tg0 = ( R 1 � i Tg0) bi1 +
�
F � i Tg0

F

�
biF + ui ; i = 1; : : : ; n

q =
�
g0; g0

F

�
=

�
qMKT ; qSMB; qHML ; q MOM

�

MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38 R 33 R 53 R 73 R
71-80 30 R 43 R 33 R 113 R
81-90 44 R -16 R 56 R 66 R

91-00 103 R 4 R 29 R 112
]� ¥ ; 3029]
[ [ 5573,¥ [

00-10 14 R 57 R 40 R 3 R

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 25 size sorted equally
weighted (EW) and value-weighted (VW) portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML) and
momentum (MOM). See notes to tables 3 and 4 for further de�nitions and applied inference methods.
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regardless of whether betas are jointly informative or not, or heterogenous enough to identify risk price,i.e.,
to identify factors that represent a non-diversi�able source of risk rather than an idiosyncratic association with
returns.

As with Lewellen et al. (2010), our methodology is applied to models with a givenand relatively small
number of popular factors. The motivation [see Lewellen et al. (2010, Footnote 3)] may be traced to Fama
and French (1993) whose main message is that relevant risks can be summarized by a small number of factors.
Since then, the literature does not necessarily dispute this fact, in the sensethat more is not necessarily viewed
as better. Instead of a consensus view on a common set of explanatory factors, a plethora of different although
related candidate factors has been proposed, which raises enduring empirical puzzles, statistical concerns and
ultimately, spurious pricing considerations [Harvey et al. (2016)].

The main message in both strands of the literature re�ected by Lewellen et al. (2010) (on analyzing models
given a small number of given factors), or Harvey et al. (2016) (on factor searches globally) is that more
stringent practices are needed. Our methodology serves this purpose by robustifying inference on risk price,
controlling for the quality of available betas. Whether practice moves towardsmore parsimonious ways of
summarizing information on factors, or towards reliance on test assets instead of test portfolios, our message is
that statistical inference on risk price should not take identi�cation for granted.
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Appendix

A Eigenvalue-based con�dence sets

Equation (3.21) may be re-expressed as

S11+ S12z = 0; (A.1)

S21+ S22z = 0; (A.2)

and solving (A.2) forz leads to (3.22). Substitutinĝz into (A.1) yieldsS11 � S12S� 1
22 S21 = 0. Assuming that

S11 is non-singular, on recalling thatS11 � S12S� 1
22 S21 is a scalar and using the formulae for the determinant of

partitioned matrices
jSj = jS22j

�
�S11 � S12S� 1

22 S21
�
� = jS22j

�
S11 � S12S� 1

22 S21
�

;

we thus see that if̂z satis�es (A.2) then it satis�es (A.1).
We next summarize the solution of (3.10) from Dufour and Taamouti (2005). Projections based con�dence

sets for any linear transformation ofz of the formw0z can be obtained as follows. LetÃ = � A� 1
22 A0

12; D̃ =
A12A� 1

22 A12 � A11. If all the eigenvalues ofA22 [as de�ned in (3.11)] are positive soA22 is positive de�nite then:

CSa (w0z ) =
�
w0Ã�

q
D̃

�
w0A� 1

22 w
�
; w0Ã+

q
D̃

�
w0A� 1

22 w
�

�
; i f D̃ � 0; (A.3)

CSa (w0z ) = ? ; i f D̃ < 0: (A.4)

If A22 is non-singular and has one negative eigenvalue then: (i) ifw0A� 1
22 w < 0 andD̃ < 0:

CSa (w0z ) =
�
� ¥ ; w0Ã�

q
D̃

�
w0A� 1

22 w
�

�
[

�
w0Ã+ [ D̃

�
w0A� 1

22 w
�
]1=2

q
D̃

�
w0A� 1

22 w
�
; + ¥

�
; (A.5)

(ii) if w0A� 1
22 w > 0 or if w0A� 1

22 w � 0 andD̃ � 0 then:

CSa (w0z ) = R; (A.6)

(iii) if w0A� 1
22 w = 0 andD̃ < 0 then:

CSa (w0z ) = Rnf w0Ãg: (A.7)

The projection is given by (A.6) ifA22 is non-singular and has at least two negative eigenvalues.

B Proofs

Proof of Theorem 3.1.Equations (A.3) - - (A.7) applied withA as de�ned in (3.12) imply that an unbounded
solution to the problem of inverting the test de�ned by (3.2) and (3.7) would occur ifA22 [refer to the partitioning
in (3.11) and (3.13)] is not positive de�nite. In this case, the diagonal term of A22 is given by DIAG(A22) =�
F2 � � � Fk

� 0where

Fi = sk[i]0B̂Ŝ� 1B̂0sk[i] � sk[i]0(X0X) � 1sk[i]
n fn; t n;a

t n
: (B.1)

Clearly, if any of the Hotelling tests based onL i , i 2 f 2; : : : ; kg [as in (3.5) and using the distribution in (3.7)]
is not signi�cant at levela , then by the de�nition ofL i andFi , L i (t n) =n < fn; t n;a , Fi < 0, in which case
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A22 cannot be positive de�nite. On comparing (3.12) and (3.14) we see thatL i (t n� 1) =(n� 1) � fn� 1; t n� 1;a ,
i 2 f 2; : : : ; kg holds for the problem of inverting the test de�ned by (3.1) and (3.7) as a necessary but not
suf�cient condition to obtain bounded CSs.�
Proof of the minimum distance computations in Theorems 3.2 and 3.3.minq L (q) is the minimum root
[denotedr̂ ] of the determinantal equation (3.19) so the minimization problem can be cast asan equation of the
(3.21) wherez = q and

S = B̂Ŝ� 1B̂0� r̂ (X0X) � 1; (B.2)

S11 = â0Ŝ� 1â� ĝx11, S12 = S0
21 = â0Ŝ� 1b̂0� ĝx12, S22 = b̂Ŝ� 1b̂0� ĝx22, using the partitioning (2.10). SôqRAPT

obtains applying (3.22) leading to (3.18).
Turning toL (q; f ), we have

¶L (q; f )
¶ f

=
� 2(1; q0)B̂Ŝ� 1i n + 2f i 0

nŜ� 1i n

(1; q0)(X0X) � 1(1; q0)0 (B.3)

and the (non-zero) value off which sets the latter partial derivative to zero is

f (q) =
(1; q0)B̂Ŝ� 1i n

i 0
nŜ� 1i n

: (B.4)

Substitutingf (q) in (B.3) leads to

L (q; f (q)) =
(1; q0)B̂

�
Ŝ� 1 � Ŝ� 1i n

�
i 0

nŜ� 1i n
� � 1

i 0
nŜ� 1

�
B̂0(1; q0)0

(1; q0)(X0X) � 1(1; q0)0 (B.5)

which proves 3.23. From there on, minq; f L (q; f ) requires one to solve a system of the (3.21) form withz = q,
and

S = B̂
�
Ŝ� 1 � Ŝ� 1i n

�
i 0

nŜ� 1i n
� � 1

i 0
nŜ� 1�

B̂0� n̂(X0X) � 1 (B.6)

S11 = â0� Ŝ� 1 � Ŝ� 1i n
�
i 0

nŜ� 1i n
� � 1

i 0
nŜ� 1�

â � n̂x11 (B.7)

S12 = S0
21 = â0� Ŝ� 1 � Ŝ� 1i n

�
i 0

nŜ� 1i n
� � 1

i 0
nŜ� 1�

b̂0� n̂x12 (B.8)

S22 = b̂
�
Ŝ� 1 � Ŝ� 1i n

�
i 0

nŜ� 1i n
� � 1

i 0
nŜ� 1�

b̂0� n̂x22 (B.9)

using the partitionings (2.10) and (2.9). So a point estimate forq [denotedq̂UAPT ] obtains applying (3.22)
leading to (3.25) and an point estimate forF thus follows using (B.4) leading to (3.26).
Proof of Theorem 3.5.Consider the following decomposition ofG0ŜGandS̃0:

G0ŜG= G0JW0M [X]WJ0G; (B.10)

CB̂G� D = C(X0X) � 1X0� XB+ WJ0� G� D = CBG� D+ C(X0X) � 1X0WJ0G; (B.11)

so under the null hypothesisCB̂G� D = C(X0X) � 1X0WJ0G and

S(C; G; D) � G0ŜG= G0JW0M 0[X; C]WJ0G; (B.12)

S(C; G; D) = G0JW0(M [X]+ M 0[X; C])WJ0G; (B.13)

which implies that (3.38) corresponds to:

jG0JW0(M 0[X; C])WJ0G� l G0JW0(M [X]+ M 0[X; C])WJ0Gj = 0: (B.14)
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SinceJ is invertible andG has full column rank, the singular value decomposition ofJ0G gives

J0G = GD1=2X (B.15)

whereD is a g-dimensional diagonal matrix which includes the non-zero eigenvalues ofJ0GG0J, G is the
n� g matrix which includes the corresponding eigenvectors soG0G = Ig andX is theg-dimensional matrix
X = D� 1=2G0J0G so thatXX0= Ig. Replacing the latter expressions in (B.14) leads to (3.43). In particular,
under assumption (3.27), (3.43) reduces to (3.45) whereZ = ZG and in view of (3.29), the rows ofZG are
i:i:d:� N(0; Ig). It follows that the null distribution of all test statistics which depend on the data via the roots of
(3.38) are invariant toB andJ. WhenG = In, (B.14) takes the form

jJW0(M 0[X; C])WJ0� l JW0(M [X]+ M 0[X; C])WJ0j = 0 (B.16)

which leads to (3.43) soB andJ are evacuated.�
Proof of Theorem 3.4.GivenH̃[C; In; D] the sum of squared error ratio simpli�es to

jS̃(C; G; D)j=jŜj = jIn + Ŝ� 1(CB̂� D)0[C(X0X) � 1C0]� 1(CB̂� D)j

= jIc + [ C(X0X) � 1C0]� 1(CB̂� D)Ŝ� 1(CB̂� D)0j (B.17)

using a well known result on determinants, which leads to (3.39).10

10For anyn� mmatrix Sand anym� n matrixU, jIn + SUj = jIm+ USj; see e.g. Harville (1997, section 18.1, p. 416).

A–3



Arbitrage pricing, weak beta, strong beta:
identi�cation-robust and simultaneous inference

Marie-Claude Beaulieu, Jean-Marie Dufour and Lynda Khalaf

Supplementary Appendix

This appendix reports further details on data, simulations and empirical results, for completion.

S.1 Further details on data

Data on industry portfolios for the US, as in Beaulieu et al. (2013), consists of monthly returns from 1961 to
2010, obtained from the University of Chicago's Center for Researchin Security Prices (CRSP), on standard 12
portfolios of New York Stock Exchange (NYSE) �rms grouped by standard two-digit industrial classi�cation
(SIC).11 For each month the industry portfolios include the �rms for which the return, price per common share
and number of shares outstanding are recorded by CRSP. Equally and value-weighted portfolios are analyzed.

The size portfolios from Fama and French's data base are constructed as follows. The portfolios which are
constructed at the end of June are the intersections of �ve portfolios formed on size (market equity) and �ve
portfolios formed on the ratio of book equity to market equity. The size breakpoints for years are the NYSE
market equity quintiles at the end of June of years. The ratio of book equity to market equity for June of year
s is the book equity for the last �scal year end ins� 1 divided by market equity for December of years� 1.
The ratio of book equity to market equity is NYSE quintiles. The portfolios for July of years to June of year
s+ 1 include all NYSE, AMEX, NASDAQ stocks for which market equity data is available for December of
years� 1 and June of years, and (positive) book equity data fors� 1.

Fama and French benchmark factors, SMB, HML, RMW and CMA are constructed from benchmark port-
folios that do not include hold ranges and do not incur transaction costs.The portfolios for these factors are
rebalanced quarterly using two independent sorts, on size (market equity, ME), book-to-market (the ratio of
book equity to market equity, BE/ME), pro�tability (annual revenues minus cost of goods sold, interest ex-
pense, and selling, general, and administrative expenses, all divided by book equity at the end of �scal year
s� 1) and investment (the growth of total assets for the �scal year ending in s-1 divided by total assets at the
end ofs� 1). The pro�tability and investment factors, RMW and CMA, are constructed in the same way as
HML except the second sort is either on operating pro�tability (robust minus weak) or investment (conservative
minus aggressive). As HML, RMW and CMA can be interpreted as averages of pro�tability and investment
factors for small and big stocks.

For the construction of the MOM factor, six value-weighted portfolios formed on size and prior (2–12)
returns are used. The portfolios, which are formed monthly, are the intersections of two portfolios formed
on size (market equity, ME) and three portfolios formed on prior (2–12) return. The size breakpoint (which
determines the buy range for the small and big portfolios) is the median NYSE market equity. The BE/ME
breakpoints are the 30th and 70th NYSE percentiles. The monthly prior (2–12) return breakpoints are also the
30th and 70th NYSE percentiles.

11The sectors studied include: (1) petroleum; (2) �nance and real estate; (3) consumer durables; (4) basic industries; (5) food and
tobacco; (6) construction; (7) capital goods; (8) transportation; (9)utilities; (10) textile and trade; (11) services; (12) leisure.
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Table S.1: Proportion of empty con�dence sets in reported �gures

Step
Figure Errors 0 -4 -3 -2 -1 1 2 3 4

1 Normal .0110 .0099 .0098 .0093 .0102 .0112 .0113 .0115 .0121
Student t(5) .0103 .0110 .0112 .0101 .0103 .0098 .0094 .0095 .0098
GARCH .0124 .0124 .0120 .0123 .0127 .0130 .0126 .0122 .0120

2 Normal .0055 .0050 .0049 0042 .0044 .0060 .0065 .0068 .0070
Student t(5) .0051 .0053 .0052 .0055 .0052 .0052 .0052 .0047 .0049
GARCH .0068 .0054 .0060 .0066 .0067 .0062 .0066 .0059 .0064

3 Normal .0100 .0086 .0089 .0091 .0097 .0106 .0105 .0108 .0119
Student t(5) .0084 .0090 .0093 .0086 .0084 .0085 .0084 .0082 .0084
GARCH .0108 .0098 .0103 .0106 .0109 .0110 .0106 .0104 .0106

4 Normal .0055 .0050 .0049 .0042 .0044 .0060 .0065 .0068 .0070
Student t(5) .0053 .0051 .0052 .0055 .0052 .0052 .0052 .0047 .0049
GARCH .0068 .0054 .0060 .0066 .0067 .0062 .0066 .0059 .0064

5 Normal .0100 .0086 .0089 .0091 .0097 .0106 .0105 .0108 .0119
Student t(5) .0084 .0090 .0093 .0086 .0084 .0085 .0084 .0082 .0084
GARCH .0108 .0098 .0103 .0106 .0109 .0110 .0106 .0104 .0106

6 Normal .6683 1.0 1.0 1.0 .9700 .9954 1.0 1.0 1.0
Student t(5) .5854 1.0 1.0 1.0 .9553 .9930 1.0 1.0 1.0
GARCH .7690 1.0 1.0 1.0 .9811 .9973 1.0 1.0 1.0

7 Normal .0095 .0096 .0091 .0091 .0094 .0076 .0073 .0069 .0069
Student t(5) .0051 .0056 .0055 .0054 .0054 .0039 .0037 .0032 .0039
GARCH .0111 .0107 .0106 .0107 .0104 .0093 .0083 .0074 .0084

8 Normal .0055 .0049 .0053 .0050 .0055 .0054 .0060 .0062 .0056
Student t(5) .0051 .0055 .0058 .0056 .0052 .0046 .0047 .0047 .0049
GARCH .0068 .0061 .0070 .0069 .0073 .0066 .0062 .0058 .0055

Note – Numbers reported are the proportion of empty con�dence sets which correspond to tests that reject the speci�cation.

S.2 Further details on simulation results

Table S.1 reports the proportion of empty joint con�dence sets in the experiments underlying each �gure in
the main text. Table S.2 presents the unidenti�ed experiment results. Reportedresults in the latter table are
restricted to size, since power is expected not to exceed size in this case, afact we veri�ed. These results con�rm
that even when identi�cation fails, the size problems documented in this literaturewith standard methods are
solved via our proposed tests.

Perhaps equally important here is our �nding in table S.1: inverting the test that imposes tradability when
it does not hold produces a very large proportion of empty sets, which implies it successfully detects the false
assumptions. Taken collectively, results reinforce the prescription in Lewellen et al. (2010) regarding tradable
factors particularly because we provide a method to validate this assumption.
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Table S.2: Monte Carlo study: tests in unidenti�ed models

n = 12; T = 624 r i = ai i T + R 1bi1 + F biF + ui

Model ai = g0(1� bi1) � g0
F biF ; g0 = qMKT ; gF = ( qSMB; q HML )0

Inverted Statistic L (q) ; q =
�
g0; g0

F

� 0

MKT betas = zero MKT betas = one

Errors Normal Studentt(5) GARCH Normal Studentt(5) GARCH

qMKT .0199 .0185 .0207 .0199 .0185 .0207

qSMB .0190 .0198 .0209 .0001 .0004 .0003

qHML .0203 .0191 .0218 .0003 .0005 .0003

Rejected .0115 .0101 .0124 .0000 .0002 .0002

Model ai = gc � g0bi1 � g0
F biF ; g0 = qMKT ; gF = ( qSMB; qHML )0

MKT betas = zero

Inverted Statistic L (q; f ) ; q = ( g0; g0
F )0; f = gc L(q) on r i � rn ; q = ( g0; g0

F )0

Errors Normal Studentt(5) GARCH Normal Studentt(5) GARCH

qMKT .0114 .0103 .0124 .0189 .0163 .0201

qSMB .0000 .0001 .0000 .0000 .0002 .0001

qHML .0000 .0002 .0000 .0001 .0003 .0002

f .0000 .0002 .0002 - - -

Rejected .0000 .0000 .0000 .0000 .0001 .0001

Note – Numbers reported are test sizes, for 5% tests, given models in which identi�cation problems are provoked by setting MKT betas

jointly to zeros or ones. All other model parameters and inverted test arekept as in the original designs. For this design, (unreported)

power curves remain below 5%.

S.3 Further details on empirical results

Here we provide results with value-weighted industry sorts, size sorts, theFama-French �ve factor model and
a representative set of results using conditioning information.

We examine conditional models estimated over the full sub-period, using the full set of industry and size
portfolios, and the (standard) conditioning variables as in Beaulieu et al. (2007). Assuming all betas are time
varying returned real lines, the same holds when each set of portfolios was used on its own which is not
surprising, given the number of regressors to add relative to the sample size.

We report a sample of results assuming that the MKT beta varies as a functionof the difference between
the one-month lagged returns of a three-month and a one month. This sample is representative is the following
sense: as the conditioning information changes, con�dence sets jump fromempty to severely unbounded a
result we observed even with a single benchmark conditional model.

Two points are worth emphasizing from tables S.10 and S.11. First, becauseindustry and size sorted
portfolios are used jointly, the advantage of equal or value weights no longer prevail. This reinforces our earlier
�ndings in this regard. Second, the conditional model in question does notfare well, in view of its rejection
with value-weighted portfolios. Given the extensive instruments search weexperimented with leading to these
tables, we do not aim to over-emphasize these results, aside from the following broad yet empirically important
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message. The identi�cation problems in this literature are not restricted to unconditional asset pricing, and
are not solved by standard conditioning which seems instead to exacerbatecomplications.12 Our �ndings
thus endorse identi�cation-robust methods for assessing whether candidate factors are associated with risk
premiums.

12For other perspectives on conditioning complications, seee.g. Boguth, Carlson, Fisher and Simutin (2011) and Penaranda and
Sentana (2016).
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Table S.3: Con�dence sets for risk price: industry portfolios and three factor model

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL A q = ( g0; g0
F )0= ( qMKT ; qSMB; qHML )0

VW MKT SMB HML

� 10� 4 F qMKT F qSMB F qHML

61-70 38* [-612,-77] 33 [10,158] 53 [-27,54]

71-80 30 [-842,286] 43 [-44,302] 33 [-244,133]

81-90 44* [75,259] -16 [-78,0] 56* [-25,24]

91-00 103 [-248, 206] 4* [83, 596] 29 [-8,159]

00-10 14 [-60,260] 57 [-276,105] 40 [-66,85]

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ); gc partialled-out

VW MKT SMB HML

� 10� 4 F qMKT F qSMB F qHML

61-70 38 [-655, 137] 33 [-60, 172] 53 [-18, 166]

71-80 30 [-625, 413] 43 [-83, 244] 33 [-179, 219]

81-90 44 [-454, 204] -16 [-56, 200] 56 [-11, 186]

91-00 103 [-230, 197] 4* [38, 673] 29 [-19,156]

00-10 14 [-73, 284] 57 [-281, 135] 40 [-61, 124]

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 12 value weighted (VW)
industry portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML). Con�dence sets are at the 5% level.
F is the factor average over the considered time period;q captures factor pricing. * denotes evidence of pricing at the 5% signi�cance
level interpreted as follows: given the reported con�dence sets, eachfactor is priced if its average is not covered. In Panel A, the
inverted test isL (q). This test follows ourRAPT approach whereR stands for “restricted” implying that tradable factor constraints
are imposed, here onR 1, in estimating and testing the model. In Panel B, the inverted testL (q) is applied on a system onn� 1
returns in deviation fromrn. This test follows ourPAPT approach whereP stands for “partialling-out” implying that all factors are
assumed non-tradable but the resulting unrestricted constant is evacuated from the statistical objective function as it is based onr i � rn,
i = 1; : : : ; n� 1.
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Table S.4: Con�dence sets for risk price: industry portfolios and four factor model

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

q =
�
g0; g0

F

�
= ( qMKT ; qSMB; qHML ; q MOM)

VW MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 [-1933, 657] 43 [-138, 595] 33 [-422, 171] 113 [-175, 594]

81-90 44 [-203, 554] -16 [-258, 81] 56 [-199, 53] 66 [-1030, 81]

91-00 103 [-253, 209] 4* [81, 606] 29 [-37, 174] 112 [-212, 443]

00-10 14 R 57 R 40 R -3 R

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; q MOM ); gc partialled-out

VW MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 [-945, 3459] 43 [-928, 324] 33 [-227, 945] 113 [-1267, 366]

81-90 44 [-3856, 581] -16 [-240, 1333] 56 [-178, 956] 66 [-2194, 70]

91-00 103 R 4 R 29 R 112 R

00-10 14
]� ¥ ; 496]

[ [ 1223,¥ [
57 R 40

]� ¥ ; 136]

[ [ 273,¥ [
-3

]� ¥ ; 734]

[ [ 2344,¥ [

Note – See notes to table S.3. The considered model is the four factor case with market (MKT), size (SMB), book-to-market (HML)
and momentum (MOM).
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Table S.5: Industry portfolios: testing traded factor assumption

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML )

VW CTE MKT SMB HML MOM

� 10� 4 g�
c F qMKT F qSMB F qHML F q MOM

61-70 [-2, 16] 38 [-765, 157] 33 [-61, 193] 53 [-28, 173] - -

71-80 [-7, 16] 30 [-843, 510] 43 [-104, 302] 33 [-251, 250] - -

81-90 [-4, 40] 44 [-707, 274] -16 [-83, 298] 56 [-31, 255] - -

91-00 [-49, 35] 103 [-249, 213] 4* [28, 726] 29 [-24,163] - -

00-10 [-6, 21] 14 [-82, 307] 57 [-315, 146] 40 [-68, 129] - -

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; q MOM )

VW CTE MKT SMB HML MOM

� 10� 4 g�
c F qMKT F qSMB F qHML F q MOM

61-70 R 38 R 33 R 53 R 73 R

71-80 R 30 R ] 43 R 33 R 113 R

81-90 [-20, 960] 44 [-19988, 683] -16 [-283, 6831] 56 [-212, 4618] 66 [-12992, 82]

91-00 R 103 R 4 R 29 R 112 R

00-10 R 14 R 57 R 40 R -3 R

Note – See notes to tables S.3 and S.4. The inverted test isL (q; f ). This test follows ourUAPT whereU stands for “unrestricted”
implies that factors are assumed non-tradable in estimating and testing the model. The test is applied onr i � R 1 so inference onf
allows to assess whethergc = g0: the hypothesis thatR 1 (here, MKT) is traded is rejected at the 5% level when the con�dence seton
f excludes zero.
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Table S.6: Con�dence sets for risk price: size portfolios

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML )

VW MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38*
]� ¥ ; -755]

[ [ 1716,¥ [
33

]� ¥ ; -260]

[ [ -31,¥ [
53*

]� ¥ ; -731]

[ [ 2599,¥ [
- -

71-80 30 R 43 R 33 R - -

81-90 44 R -16 R 56
]� ¥ ; 707]

[ [ 818,¥ [
- -

91-00 103* [-11236, -1030] 4 [-568, 1375] 29 [-5394,730] -

00-10 14*
]� ¥ ; -1788]

[ [ 1895,¥ [
57 R 40 R - -

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; q MOM )

VW MKT SMB HML MOM

� 10� 4 F qMKT F qSMB F qHML F q MOM

61-70 38 R 33 R 53 R 73 R

71-80 30 R 43 R 33 R 113 R

81-90 44 R -16 R 56 R 66 R

91-00 103 R 4 R 29
]� ¥ ; 969]

[ [ 3955,¥ [
112

]� ¥ ; 3167]

[ [ 5035,¥ [

00-10 14*
]� ¥ ; -1761]

[ [ 1261,¥ [
57 R 40 R -3 R

Note – Sample includes monthly observations from January 1991 to December 2010 on the US. Series include 25 size sorted value-
weighted (VW) portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML) and momentum (MOM). See
notes to tables S.3 and S.4 for further de�nitions and applied inference methods.
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Table S.7: Con�dence sets for risk price: industry portfolios and �ve-factor model

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL A q = ( g0; g0
F )0= ( qMKT ; qSMB; qHML ; qRMW; qCMA)0

EW MKT SMB HML RMW CMA

� 10� 4 F qMKT F qSMB F qHML F qRMW F qCMA

63-70 28 R 57 R 41 R 2 R 22 R

71-80 30 R 54 R 33 R 5 R 25 R

81-90 44
]� ¥ ; -53]

[ [ 9,¥ [
-20 R 57

]� ¥ ; -101]

[ [ 49,¥ [
39*

]� ¥ ; -67]

[ [ 42,¥ [
55 R

91-00 103 [-2014, 116] 3 [-389, 255] 27 [-567, 88] 32 [-298, 368] 30* [-927,-3]

00-10 14 R 65 R 41 R 44 R 35 R

Full 45 [-289, 134] 30* [-54, 14] 40 [-132, 79] 26 [15, 326] 34 [-532, 87]

VW MKT SMB HML RMW CMA

� 10� 4 F qMKT F qSMB F qHML F qRMW F qCMA

63-70 28 R 57 R 41 R 2 R 22 R

71-80 30 R 54 R 33 R 5 R 25 R

81-90 44 [-149, 787] -20 [-360, 91] 57 [-76, 123] 39 [-362, 154] 55 [-127, 217]

91-00 103 [-242, 1081] 3* [76, 1641] 27 [-98, 167] 32 [-596, 48] 30 [4, 893]

00-10 14 R 65 R 41 R 44 R 35 R

Full 45 [-92, 546] 30 [-13, 358] 40 [-25, 110] 26 [-446, 31] 34 [-31, 768]

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; qRMW; qCMA); gc partialled-out

EW MKT SMB HML RMW CMA

� 10� 4 F qMKT F qSMB F qHML F qRMW F qCMA

63-70 28 R 57 R 41 R 2 R 22 R

71-80 30 R 54 R 33 R 5 R 25 R

81-90 44 R -20 R 57 R 39 R 55 R

91-00 103
]� ¥ ; 134]

[ [ 1473,¥ [
3

]� ¥ ; -434]

[ [ -337,¥ [
27 R 32 R 30 R

00-10 14 R 65 R 41 R 44 R 35 R

Full 45 [-219, 136] 30 [-71, 138] 40 [-103, 243] 26 [-179, 264] 34 [-373, 369]

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 12 equally weighted (EW)
and value-weighted (VW) industry portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML), pro�tability
(RMW), and investment (CMA). Con�dence sets are at the 5% level.F is the factor average over the considered time period;q captures
factor pricing. * denotes evidence of pricing at the 5% signi�cance levelinterpreted as follows: given the reported con�dence sets, each
factor is priced if its average is not covered. The VW sets conformable with Panel B are allR.
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Table S.8: Con�dence sets for risk price: industry portfolios and �ve-factor model, excluding HML

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL A q = ( g0; g0
F )0= ( qMKT ; qSMB; qRMW; qCMA)0

VW MKT SMB RMW CMA

� 10 F qMKT F qSMB F qRMW F qCMA

63-70 28 [-126, 400] 57 [-113, 60] 2 [-101, 50] 22 [-50, 62]

71-80 30 R 54 R 5 R 25 R

81-90 44 [-141, 645] -20 [-252, 75] 39 [-220, 126] 55 [-107, 122]

91-00 103 [-236, 594] 3* [78, 1099] 32 [-370, 46] 30 [27, 477]

00-10 14 R 65 R 44 R 35 R

Full 45 [-91, 147] 30 [-13, 152] 26* [-97, 20] 34 [12, 129]

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qRMW; qCMA); gc partialled-out

VW MKT SMB RMW CMA

� 10� 4 F qMKT F qSMB F qRMW F qCMA

63-70 28 [-387, 572] 57 [-131, 285] 2 [-102, 229] 22 [-32, 407]

71-80 30 R 54 R 5 R 25 R

81-90 44 [-3897, 3713] -20 [-1601, 1721] 39 [-1327, 1065] 55 [-1664, 1968]

91-00 103 [-221, 6116] 3* [11, 12025] 32 [-7807, 151] 30 [13, 4639]

00-10 14 R 65 R 44 R 35 R

Full 45 [-104, 145] 30 [-18, 153] 26 [-93, 46] 34 [5, 127]

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 12 value weighted (VW)
industry portfolios as well as US factors for market (MKT), size (SMB), pro�tability (RMW), and investment (CMA). Results in Panel
A rely on ourRAPT approach, and those in Panel B or itsPAPT counterpart; see notes to notes to table S.3 for further de�nitions.
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Table S.9: Industry portfolios, �ve-factor model: testing the traded factorassumption

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; qRMW; qCMA)

EW CTE MKT SMB RMW CMA

� 10� 4 g�
c F qMKT F qSMB F qRMW F qCMA

63-70 R 28 R 57 R 2 R 22 R

71-80 R 30 R 54 R 5 R 25 R

81-90 R 44 R -20 R 39 R 55 R

91-00
]� ¥ ; -486]

[ [ -168,¥ [
103

]� ¥ ; 165]

[ [ 1266,¥ [
3 R 32 R 30 R

00-10 R 14 R 65 R 44 R 35 R

VW CTE MKT SMB RMW CMA

� 10� 4 g�
c qMKT qSMB qRMW qCMA

63-70 R R R R R

71-80 R R R R R

81-90 R R R R R

91-00 R R R R R

00-10 R R R R R

r i � R 1 = ai i T + R 1di + F biF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q = ( g0; g0
F ) = ( qMKT ; qSMB; qRMW; qCMA)

EW CTE MKT SMB RMW CMA

� 10� 4 g�
c qMKT qSMB qRMW qCMA

63-70 R R R R R

71-80 R
]� ¥ ; 29]

[ [359,¥ [
* R

]� ¥ ; -449]

[ [ -171,¥ [

]� ¥ ; 231]

[ [ 335,¥ [

81-90 R R R R R

91-00
]� ¥ ; -568]

[ [ -154,¥ [

]� ¥ ; 135]

[ [ 1495,¥ [

]� ¥ ; -520]

[ [ -277,¥ [
R R

00-10 R R R R R

VW CTE MKT SMB RMW CMA

� 10� 4 g�
c qMKT qSMB qRMW qCMA

63-70 [-2, 62] [-461, 1094] [-152, 507] [-118, 580] [-50, 863]

71-80 R R R R R

81-90 R R R R R

91-00
]� ¥ ; 47]

[ [ 465,¥ [

]� ¥ ; -2123]

[ [ -239,¥ [

]� ¥ ; -3915]

[ [ -10,¥ [

]� ¥ ; 168]

[ [ 2722,¥ [

]� ¥ ; -1493]

[ [ 4,¥ [

00-10 R R R R R

Note – The inverted test isL (q; f ). This test follows ourUAPT whereU stands for “unrestricted” implies that factors are assumed
non-tradable in estimating and testing the model. The test is applied onr i � R 1 so inference onf allows to assess whethergc = g0: the
hypothesis thatR 1 (here, MKT) is traded is rejected at the 5% level when the con�dence seton f excludes zero. In the upper Panel of
this table, all con�dence sets on the HML price are the real line; the lower Panel excludes HML.
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Table S.10: Con�dence sets for risk price: industry and size portfolios,�ve-factor model, instrumenting MKT
with LagTBill31

r i � i Tg0 = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; i = 1; : : : ; n

PANEL A q = ( g0; g0
F )0= ( qMKT ; qSMB; qHML ; qRMW; qCMA)0

EW MKT SMB HML RMW CMA

� 10� 4 qMKT qSMB qHML qRMW qCMA

Full [-1496, 232] [-265, 29]* [-577, 377] [-354, 934] [-2391, 197]

VW MKT SMB HML RMW CMA

� 10� 4 F qMKT F qSMB F qHML F qRMW F qCMA

Full 45 ? 30 ? 40 ? 26 ? 34 ?

r i � i Tgc = ( R 1 � i Tg0)bi1 + ( F � i Tg0
F )biF + ui ; ; i = 1; : : : ; n

PANEL B q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; qRMW; qCMA); gc partialled-out

EW MKT SMB HML RMW CMA

� 10� 4 qMKT qSMB qHML qRMW qCMA

Full
]� ¥ ; 268]

[ [ 7594,¥ [

]� ¥ ; 30]

[ [ 3219,¥ [

]� ¥ ; 337]

[ [ 7422,¥ [

]� ¥ ; -10725]

[ [ -314,¥ [

]� ¥ ; 174]

[ [ 23510,¥ [

VW MKT SMB HML RMW CMA

� 10� 4 F qMKT F qSMB F qHML F qRMW F qCMA

Full 45 ? 30 ? 40 ? 26 ? 34 ?

Note – Sample includes monthly observations from July 1963 to December 2010 on the US. Series include 37 equally weighted (EW)
and value-weighted (VW) industry and size portfolios as well as US factors for market (MKT), size (SMB), book-to-market (HML),
pro�tability (RMW), and investment (CMA).

Table S.11: Industry and size portfolios, �ve-factor model. InstrumentingMKT with: LagTBill31, Testing
Traded Factor Assumption

r i � R1 = ai i T + R1di + FbiF + ui ; i = 1; : : : ; n;

ai = g�
c � g0di � g0

F biF ; di = bi1 � 1; g�
c = gc � g0

q = ( g0; g0
F ) = ( qMKT ; qSMB; qHML ; qRMW; qCMA)

EW CTE MKT SMB HML RMW CMA

� 10� 4 g�
c qMKT qSMB qHML qRMW qCMA

Full
]� ¥ ; 75]

[ [ 762,¥ [

]� ¥ ; 411]

[ [ 1775,¥ [

]� ¥ ; 37]

[ [ 923,¥ [

]� ¥ ; 378]

[ [ 2172,¥ [

]� ¥ ; -3201]

[ [ -355,¥ [

]� ¥ ; 225]

[ [ 7036,¥ [

VW CTE MKT SMB HML RMW CMA

� 10� 4 g�
c F qMKT F qSMB F qHML F qRMW F qCMA

Full ? 45 ? 30 ? 40 ? 26 ? 34 ?

Note – The inverted test isL (q; f ). This test follows ourUAPT whereU stands for “unrestricted” implies that factors are assumed
non-tradable in estimating and testing the model. The test is applied onr i � R 1 so inference onf allows to assess whethergc = g0: the
hypothesis thatR 1 (here, MKT) is traded is rejected at the 5% level when the con�dence seton f excludes zero.
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