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ABSTRACT

Factor models based on Arbitrage Pricing Theory (APT) characteriz@&eametergointly and nonlinearly,
which complicates identi cation. We propose simultaneous inference methoith wheserve equilibrium
relations between all model parameters includirgpostsample-dependent ones, without assuming identi ca-
tion. Con dence sets based on inverting joint tests are derived, an@diteanalytical solutions are supplied.
These allow one to assess whether traded and nontraded factorscack rigk-drivers, and to take account
of cross-sectional intercepts. A formal test for traded factor assungpioproposed. Simulation and empir-
ical analyses are conducted with Fama-French factors. Simulation resdissgore the information content
of cross-sectional intercept and traded factor restrictions. Thre&ieaipesults are especially noteworthy:
(1) the Fama-French three factors are priced before 1970; theremdtend no evidence favoring any factor
relative to the market; (2) heterogeneity is not suf cient to distinguish grib@mentum from pro tability or
investment risk; (3) after the 1970s, factors are rejected or appeamiedk, depending on intercept restrictions
or test portfolios.
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1 Introduction

Arbitrage Pricing TheoryAPT) and its concepts are core components of nancial economics. Despiteegd
disagreements about risk factors and the measurement of risk premilsieg factor models are workhorse
tools for asset pricing; for some references which illustrate these delsmte Harvey, Liu and Zhu (2016),
Gagliardini, Ossola and Scaillet (2016), Ahmed, Bu and Tsvetanov 261, Mo, Xue and Zhang (2018),
and Chib and Zeng (2019). This paper addresses an aspect ahsdels not broadly recognized: weak iden-
ti cation. If identi cation can be arbitrarily weak, conventional methods detitests and con dence intervals
that are invalid even asymptotically and thereby yield misleading empirical desidibotivated by these con-
siderations and the abundance of available candidate factors, thisgpapeses econometric methods that: (i)
reveal weak factors when present and deliver valid inference iomgr (ii) detect misspeci cation including
assumptions on tradable factors; and (iii) preserve APT fundamentals adéxdiiand nontraded factors.

Our analysis is based on equilibrium speci cations that characterize themsniumsjointly, along with
the zero-beta rate, factor expectations and the unknown factor logdiegso-called factobetag. Formally,
the APT stipulates that the unconditional expectation of returns, denotexttes as th@-dimensional vector
m, is linear in factor loadings:

m = ing.+ bG (1.1)

whereGis the vector of risk premiums, the scalgris the so-called cross-sectional intercept or the zero-beta
rate,b=[b; by]istheq n matrix of loadings andj is the number of relevant risk factors. All of these
parameters including are unknown.

This explains why factor models based on (1.1) have traditionally been edlinnsitey so-called two-pass
methods [as revieweel.g. by Shanken and Zhou (2007)], where: (i) the rst pass uses timesserggessions
of returns on factors, in order to estimdipand (ii) the second pass involves cross-sectional regressions of
returns on the estimatdg in order to identifyG. Consequently, measurement errors arising from estimated
betashave long been considered as a major identi cation threat. A recentroésgtaand also highlights deeper
problems resulting from insigni cant or homogendostas see Kan and Zhang (1999), Beaulieu, Dufour and
Khalaf (2009), Kleibergen (2009), Beaulieu, Dufour and Khalafi@Q0 Kan, Robotti and Shanken (2013),
Gospodinov, Kan and Robotti (2014), Kleibergen and Zhan (201302 @&nd Kleibergen, Lingwei and Zhan
(2019).

More broadly, itis clear from (1.1) th&is not identi ed unless the true and unknowmatrix has full rank.
Identi cation problems thus affect multiple parameters and may have ses@nales. Sorting out these multiple
in uences may be dif cult, due to the nonlinear structure of (1.1). Instead aim is to present measures of
estimation uncertainty that preserve the APT-based association betwamteallparameters includingalized
or sample dependent random ones. In particular, an alternative garanteoduced by Shanken (1985) and
Shanken (1992) as tlex-postrisk premium has recently regained interest:

G=G+R ny (1.2)

whereR is the empirical factor mean ant is its expectation; see Khalaf and Schaller (2016), Jegadeesh,
Noh, Pukthuanthong, Roll and Wang (2019), and Kim and Skoulakis3R0

Given the importance adlphasand betasfor assessing the quality of an asset pricing model, we rst
propose simultaneous con dence intervals for (in turn) the unrestrictsgbonents of the time-series intercepts
and each one of the loading vectors. Next, we construct level-cawaaience sets for the zero-beta rate and
the risk premiums again viewed jointly and using traditional rst-pass estimgdésccounting for estimation
error regardless of whether factbetasare jointly informative or heterogenous enough. In particular, these
con dence sets serve to robustly assess whether candidate faeqrscad risk-drivers. This approach extends



the single-benchmark identi cation-robust method proposed by Beauti@l €2013) to multivariate beta-
pricing models.

In doing so, a framework is required in the presence of traded andraded factors. Despite well-known
advantages, restricting focus to traded factors is unduly restrictigeSisenken and Weinstein (2006), Shanken
and Zhou (2007), and the above cited literature on competing risk fafdoesdiscussion on some advantages
of traded factors, see Gospodinov, Kan and Robotti (2019), BarildsShanken (2017, 2018), and Pukthuan-
thong, Roll and Subrahmanyam (2019). Concretely, implications of tréaisdrs have been operationalized
by restrictions involving the zero-beta rate [Barone-Adesi, Gagliardidildrga (2004), Penaranda and Sen-
tana (2016)]. While this principle is well accepted, empirical analysts ofte¥step cross-sectional intercepts
[Lewellen, Nagel and Shanken (2010)], thereby forfeiting importapiildrium relations. In contrast, we
provide simultaneous con dence sets with both traded and nontradeddadioaddition, and crucially, our
empirical approach exploits the information content of the cross-sectieatept to uncover links that would
likely be lost when returns are considered in deviation from some asset Kdsibergen (2009), Kleibergen
and Zhan (2015), Kleibergen et al. (2019), Kleibergen and Zha2QR(5imultaneous inference ensures that
equilibrium restrictions are jointly maintained, which as emphasized, is a fundaheguilibrium requirement.
This is however not the whole story, since identi cation concerns progaapelling statistical rationale for
simultaneous methods.

Indeed, to control statistical coverage without assuming identi cation,weged by inverting joint model
tests. These include: (i) the joint regression intercept test statistic by @bloss and Shanken (1989)
and its counterparts pertaining to each factor [sge Dufour and Khalaf (2002) and Beaulieu, Dufour and
Khalaf (2010)], and (ii) the cross-sectional statistics discussed bpk&haand Zhou (2007) and Lewellen
et al. (2010). When underlying parameters are xed, all these statigécefadhe Hotelling form [Hotelling
(1947)]. We show that the resulting inversion requires multi-dimensionadiigtic inequalities. We provide
a uni ed and tractable analytical solution to these inequalities and supponiieesample and simulation
assessments in namnd. and non Gaussian settings, all of which are new to both asset pricingcandraetric
literatures. Analytical computations rely on the mathematiagaidrics[Dufour and Taamouti (2005), Dufour
and Taamouti (2007)j.

Features of our methodology which are worth emphasizing — as well as itegstrean extensive simulation
study — include the following. The rst one is a joint treatment of factors @dwimultaneously rather than
individual proxies. The second feature is our reliance on set ratharjtist point estimates for parameters of
interest. In contrast with Kan et al. (2013) and Gospodinov et al. (R@1id statistics we invert to derive these
sets are ndttype measures and can be empty or unbounded, re ecting misspeci@uriafion or lack thereof.
The third notable feature is our analytical solution to both point and set estimateontrast with Kleibergen
(2009), Kleibergen et al. (2019) and Kleibergen and Zhan (2020)mtpose numerical test inversion methods,
our analytical solutions cover the zero-beta rate and control for fattat are traded portfolios. In addition,
we propose a formal test for traded factors assumptions, which to thetesr knowledge is new to the
literature. Our simulation results underscore the information content o$-sedional intercepts and traded
factor restrictions.

Our main empirical nding concerns the potential weakness (from an ideation viewpoint) of the Fama-
French-Carhart factors [Fama and French (1992), Fama andhi—&8@3), Carhart (1997), Fama and French
(2015)]. Using NYSE data from 1961-2010, we nd the Fama-FrencheHtactors are priced concurrently
before 1970 with equally weighted industry portfolios, as well as with sizted portfolios in the 1970s (only).
Evidence of pricing weakens thereafter, as the model is either rejectegakly identi ed, depending on
intercept restrictions or test portfolios. Interestingly, we do not nd ewick favouring size and book-to-

LFor further quadric based solutions in different contexts, see Bokhaiaf and Yelou (2010) for inference on multiple ratios, and
Khalaf and Urga (2014) for inference on cointegration vectors.



market risk over the market risk. For instance, with size portfolios, in ddpstiods except the 1980s and
2000s in which our con dence sets on the market risk are uninformatieanarket is signi cantly priced. The
Carhart and the recent Fama and French (2015) factors are dffgcteeak-identi cation problems. Finally,
the considered models do not fare well when test assets are used joidtlyata is generally less informative
after 2000.

The paper is organized as follows. Section 2 sets the asset pricing gisticstaframework. Section 3
provides our inference methodology. Our simulation and empirical reselteported in section 4. Section 5
concludes the paper, and proofs are presented in a technical &ppend

2 Model and identi cation framework

Letri,i=1; :::; n; be avector off returns om assets, over the periac 1;:::;T,andR =[ R, Rqla
T g matrix of observations on a setgfisk factors that potentially explain returns. It is now generally agreed
that candidate models should also attempt to price proposed factors andeitath traded and nontraded
factors. To describe how to do so, assume Ratis a vector of returns on a tradable factor, for example a
market benchmark, sothR& =[ R1F JwhereF =[R2 RglisaT (g 1) matrix of observations on
(g 1) nontraded factors.

The APT equilibrium condition leads one to consider regressions of the for

ri=ait+Ribp+F b +u; i=1:::;n; (2.2)
a= gl b1) b [restricted] (2.2)
a=0 Gb1 O bir; [unrestricted] (2.3)

wherebj; is a scalarpir isa(q 1) 1 vector,gyandge incorporate the risk premiums as follows:

= g ° mk G (2.4)

Campbell, Lo and MacKinlay (1997, Chapter 6), Shanken and Zhow 2@ references therein.

2.1 APT conditions, traded and nontraded factors

Condition (2.3) introduces the APT risk premiums as free parameters, lnendenote it as thanrestricted
APT speci cation. In contrast, condition (2.2) that we describe asréstrictedspeci cation further allows
the traded factoR 1 to price itself[Lewellen et al. (2010, Prescription 4)] if it is added to the set of leftehan
side test assets. In other words, sifteitself should satisfy (1.1) then it should be ti@t= ny, g, which
in view of (2.4) implies thaig, = g.. Clearly, settingg, = g, in (2.3) gives (2.2). This restriction and the
information content of, matter importantly for model assessment [Barone-Adesi et al. (2004 llen et al.
(2010) and Penaranda and Sentana (2016)].

Estimating and testing this model confront enduring hurdles sincle metrix is unobserved. Indeed, from
(2.2) or (2.3), itis clear that the componentsgatannot be identi ede.g.when the corresponding components
of bj =[bjy; bioF 1°do not differ enough oveir(i.e., in cross-section), and in particular, are jointly close to one

2We consider a single traded factor for notational ease. Extensions to imuitifable factors follow straightforwardly. Our main
empirical analysis considers this restriction for the market benchmdykteence this notation.

3Taking unconditional expectations of the unconstrained (2.1) regressith a time invariant perspective impliesy =
(ag;:::; an)o+ by ; which equated with (1.1) yields (2.3).



or to zero. Possibly non-informative factors and reliance on portfollisiwends to equalizeetasimply that
identi cation cannot be taken for granted.

Furthermore, (2.4) evinces the fundamental dif culty of identifyf@gasny is unknown. This fact has long
been exploited to justify two-pass methodologies [as revieweaslgn Shanken and Zhou (2007)]Instead,
Shanken (1985) provides economic motivation for usingekgostrisk premiumG de ned in (1.2) as a
function of the factors' empirical meaR . In the present regression conte®t,= R q. Empirically, it has
long been recognized [segy. Shanken (1992), Campbell et al. (1997, Chapters 5 & 6)]dhzgn be estimated
even thougimy is unknown. From there o can be estimated conditioning on the factors. The gains from
usingG are especially notable in nite samples Bscan deviate markedly from in some subperiods. We
thus focus on this parameter given our nite sample perspective, to exipéositatistical properties of (2.1).

It is also important to note that (2.2) or (2.3) are jointly determined by the elenoénitee vectorq, so
a change in one element gfmay be “cancelled” by a change on another elemerg.oConsequently, it is
crucial to make joint inference of the vecigpr Formally, we derive a joint con dence region fgrconditioning
on the factors (imposing or relaxirgy = g.) and project this region to obtain simultaneous con dence sets for
each of the components gf We next assess pricing re ecting zero-restrictions on the componéms ogq:
each factor is considered not priced if its empirical mean is not covereldebgon dence set associated with
the corresponding componentaf Our con dence intervals are simultaneous, which implies that decisions on
pricing will also be simultaneous.

As emphasized abovg, also holds important information on model t, and so does the restrigjien g..

Our method will produce a con dence interval fgg in addition to each component ofy; g2 . Testing
g. = gp can be conducted via the following reparameterization:

% b1 ®br=g gGbi ) £br; G=6 %: (2.5)

The intercept can be “partialled-out” if we rewrite the regressions in tewifrom one of them, leading to
n 1 equations, in which case we will obtain another con dence intervaldoh&€omponent ofgy; gﬁ , atthe
expense of foregoing information @p. The statistic we consider to do this is a monotonic transformation of
the LR-based criterion [the so-called FAR test] introduced by Kleiberg@@qd). Interpretations on pricing are
unchanged, and as in Kleibergen (2009), Kleibergen et al. (2010iKkibergen and Zhan (2020), the statistic
is invariant to the equation chosen as the deviation basis. We formally dsegs®s and cons of evacuating
g, for estimation and t purposes.

For further reference, the frameworks we consider are categaizéallows: model (2.1)-(2.2) is denoted
RAPT whereR stands for “restricted” which refers to traded factor constraints; m@dg)-(2.3) which relaxes
the latter constraints is denoted\PT whereU stands for “unrestricted”, in which case we refer to partialling
g. out as thePAPT approach, wher® stands for “partialling-out”. We will also refer to the hypothesis

Hc :gc gc gO: 0 (2-6)

which can be tested by checking whether the con dence sej.for (2.5) covers zero.

2.2 Reduced rank regressions

The above equilibrium models can be de ned via rank restrictions on a miigtieaegression of the form:

Y=XB+U; U=WXP, Y=BX+U; U=JIW; t=1:::T; (2.7)

4"An average return carries no information about the mean of the félatris not already observed in the sample mean of the
factor.” [Cochrane (2005, p. 245)]. See also Penaranda andr&e(2016), on including moment conditions on factors means with
GMM.



whereY is aT n matrix of observations on endogenous variable¥, is aT k full-column rank matrix
of exogenous variable®; ande are, respectively, thieth row of Y andX so thatY; andX; provide thet-th
observation on the dependant variables and regresk@sinknown, non-singular and possibly randctmﬁ,is
thet-th row of U, WisaT n matrix of random errors\M0 is thet-th row of W, and the joint distribution of

Wi; :i Wy is either fully speci ed, or speci ed up to a nuisance parameteiFinite sample results assume
we can condition oiX for statistical analysis.
Throughout the paper, we maintain the following assumptions and notddiéd:; ::: ;dn) refers to an

m-dimensional diagonal matrix with diagonal elemedhis::: ; dm. i j refers to aj-dimensional vector of ones.
The number of factors ig= k 1. DIAG(A) refers to a column vector from the diagonal of a makixFor
anyN K matrix A, veqA) returns arNK 1 vector, with the columns oA stacked on top of each other;
M [A]= 1 A(A%) A%for any full column rank matrixA. We referto a 1 a level CS for a parameter as
CSa(d). Let
B=(x%) X% ; S$=UU; U=Y XB (2.8)
For presentation ease, we use the following matrix partitions:

11 12

X X

(XX) = W21 522 (2.9)
wherex!! is a scalarn®' = x1®isq 1 andx??isq ¢, and
3 2 . 3
b$ b
20 A 0 2 A 2
B= b : B= 5 i b= by bn =2§£Z>; b=§52 (2.10)
by by
wherea=(ay;:::; an)ois the vector oh intercepts, anthisq n.
The rank restrictions in question can be written as:
HraprT : (1;g9B= 0; for some unknown vectay; (2.11)
Huapt : (1;q9B= fi 8,  for some unknown vectdm® f )2 (2.12)

whereqg is q 1 andf is an unknown scalar. Indeed, rewriting (2.1)-(2.2) with left-hand side returns in
deviation fromR 1 yields, fori= 1;:::;n:

rn Ri=(R1 itgy)[bn 2+ F it b +u; i=1:;n;

or alternatively

1
=
>

ri Ri=ait+Rdi+F b +u;; i i (2.13)
a= gt Rbr; di=by 1; (2.14)

which is a special case of (2.7) whéfestacks the matrix of returns in deviation from the tradable benchmark,
imposing (2.11) with

= g © (2.15)

The non-tradable case (2.1)-(2.3) is the regression
ri=ait+Ribi1+ F b + u; =21 (2.16)
a=g b o b (2.17)

STypically, (2.11) and (2.12) assume that n.



which again is a special case of (2.7) wh¥rstacks the matrix of returns, imposing (2.12) with
g= g °andf = g
Regression (2.1)-(2.3) can also be re-expressed as
ri Ri=ait+ Rdi+ F b + uj; i=1::::n; (2.18)
a=0 Gt Rbr; d=b1 L g.=0 (2.19)

in which imposing (2.12) witlf = g, provides a test of (2.6). Finally, it is also straightforward to see that the
model in deviation from one of the returns yields a system ofl equations conformable with (2.11).

This paper focuses on estimating and testjramdf . Furthermore, we provide cross-equation simultaneous
con dence sets for the parameters of the unrestricted asset pricirességn. Formally, we invert the test that
xes each row ofB, in turn, to a xed vector; the associated hypotheses takes the form

H:slj]B= 5? j2f1;:::kg; Ej known (2.20)

wheres([j] denotes &-dimensional selection vector with all elements equal to zero except fgrithelement
which equals 1. To interpred;, recall that the classical zero restriction hypothesis underlying the Haellin
statistic which is viewed as the multivariate extension of the Stutdkased signi cance test corresponds to

Hoj :sljlB=0;, j2f1::: kg (2.21)

so for example using[1] provides inference on the unrestricted regression intercept, and irothext of
an unrestricted regression in deviation from the tradable factor [(2H®)ea ignoring the constraintsg[2]

allows one to assess tibetason the tradable factor in deviation from one. Assembling fthevectors that
are not rejected at a given level yields a joint con dence set for tleesponding row oB which contain, in

deviation from one) on each factor over all considered assets.

In addition to useful information on underlying assets, the unrestrictag:ssign intercepts anbletas
underlie identi cation of the above de ned risk premiums. Formally, épto be recoverable with no further
data and information (in particular in the absence of other instrumentd)ethgoer factor need to vary enough
across equation. Concrete identi cation failure problems discussed inliBaat al. (2013) (and the reference
therein) relate to benchmabetasjointly [acrossi] equal to one. Kleibergen (2009) discusses the case of small
betasin the sense of jointly [acros§ equal to zero, which may be traced back to Kan and Zhang (1999).
Regardless of the source, identi cation gfis driven by the joint cross-equation nature of the information
conveyed by each factor. Our simultaneous approach for inferangeas well as for the underlying reduced
form betasthus zooms in on the core of the nancial problem. Concretely, using psfather than individual
assets as test assadts.( for rj in our notation) tends to equalib®tasacross equations; whether moving away
from portfolios to individual assets which calls for alternative informatietuction technique is an answer to
this problem remains an open question which is beyond the scope of thefivékthis literature as well as the
present paper which requirds k n> 0. Our methodology is presented in the next section for the general
(2.7) regression.

3 Con dence sets for factor loadings and risk premiums

Following Beaulieu et al. (2013) and Kleibergen (2009), we focus oertmg identi cation-robust statistics,
i.e., statistics whose null distributions are provably invariant to whether ideatibn holds or not. We focus

6



on Hotelling-type statistics
[(1,g9B fi AS “[BYL q9° fin]
L(g;f)=
(@:7) (T 90x%) (190
_ (4998BS *BYL 49°
(L g)(XX) 1(L; q9°

whereq®andf are given. These statistics serve to assess the special ca$gsegfandHuapt [in (2.11)) -
(2.12] respectively

(3.1)

L ()

(3.2)

Hr:(1;q9B=0; q known (3.3)
Hu:(Lg9B=1fi 3  (q°%f)°known (3.4)
In addition, we invert the series of statistics associated with each &f;ti2.20):
(b b)SXb; bty
sdilAXX) sdj] n

L(b;)= (3.5)

where and3? is the jth row of B: These statistics are also of the Hotelling form [see Dufour and Khala2j200
note that the classical Hotelling statistics to assess eadp;d®.21) are

i8S BN
O SIIAXX) il

(3.6)

When errors are normal then
t t -t
L(g)— F(mtn); L(g:f)— F(mtn); L(b)— F(ntn) (3.7)

wheret,= T k n+ 1. The latter distributional results do not require any identi cation restric‘iidrbj
also follow the same null distribution. Underlying nite sample theory is discdisssection 3.3. Simulations
reported in 4.1 show that for the problem under consideration comegppto 5 or 10 year subsamples, the
normal cut-off controls size whether errors are multivariate Stutlentin the presence of GARCH effects.
Prior to these analyses, we discuss in the next section how inverting these tests can be performed
analytically.

3.1 Analytical solution

Inverting the above tests requires solving in turn, degrf ), q andEj respectively, the inequalities
t t — 1
L(qif)ﬁn fritna; L(Q)ﬁn fritna; L(bj)ﬁn fritnas (3.8)

wheref,¢,.a denotes thea -level cut off point from theF (n; t,) distribution. The following uni ed analysis
using the mathematics of Quadrics generalizes the Beaulieu et al. (2018prsatu (ii) the multi-factor
context, and (iii) the estimation of factor loadings and Jensendifi®as

Each inequation in (3.8) is rewritten as

(1; 29A1; 29° 0o (3.9)

60ther than the usual Least Squares assumptior)@émndéof course.



wherez is them 1 vector of unknown parameters afids an(m+ 1) (m+ 1) data dependent matrix. Next,
inequality (3.9) is re-expressed as
Z%00z + 27152+ A;1 O (3.10)

which leads to the set-up of Dufour and Taamouti (2005) so projecticeti@Ss for any linear transformation
of z of the formw® can be obtained as described in these papers. The solution is repiddtive Appendix
for completion.

Moving from (3.9) to (3.10) requires partitionirgas follows

A1 A

A=
Aor Ax

(3.11)

whereA;;1is a scalarAzism m, andApp = Agl is1 m. Simple algebraic manipulations suf ce to show that
for the test de ned by (3.2), we have:

A=BS 1B (XX) Y(n=t,) frr,a (3.12)
settingz = g. Using the partitionings (2.10) and (2.9 = a5 1a  ((n=tn) foea) X A= A9 =
a%s 0 [(n=ty) fr¢.:a]x*? and o

A= bS 0% [(n=tn) fnr,:a X% (3.13)

In the case of (3.1), we hawe= q°f %and

BS 1B (XX) Mytpagy  BS g

- i9S B0 i9S tin (3.14)
Finally, inverting (3.5) yields = Eioand the quadric form (3.10) with
Ap=S%Y Ap= b%YL A= nsdldXX) s =tn (3.15)

The outcome of resulting projections can be empty, bounded, or the unta @inbounded disjoint sets.
Dufour and Taamouti (2005) discuss such outcomes depending impoxtarttigA,, matrix. In particular, the
con dence set is unboundedAb; is not positive de nite. It is thus clear that inverting (3.5) produces lamah
sets asSis assumed invertible. The following Theorem further shows that if anyeoHibtelling tests based on

be unbounded. That is, if any of the factors is redundant from a jwjnt sance perspective, then information
on risk pricedor all factorsis compromised.

Theorem 3.1 In the context of2:7), if
(tr=n)Lj < frtnar 1212100 kg (3.16)
whereL; are the Hotelling statistics de ned ifB:5), then the CS fog as de ned in(2:11)] which inverts the

statistic(3:2) at thea-level is unbounded.

The above condition is suf cient but not necessary. It follows thataltih Hotelling tests on each factor
are useful, they remain insuf cient, and perhaps more importantly, are duheldan our methodology without
compounding type-I errors. This characterization also holds whentingehe test de ned in (3.1) and (3.7).



3.2 Empty con dence sets and minimum distance statistics

The con dence set for factor loadings cannot be empty. IndeedpiyiEnd Taamouti (2005) show that in the
context of (3.10) and a positive de nit&,,, the con dence setis empiy D= A12A221A12 A11< 0. Here,
from (3.15) we have

D= b5,% b+ n sfAXX) 'sfi] =t, O

Moving on to the case df (g), we proceed by generalizing the single-beta results in Beaulieu et aB)(201
Because the cut-off point underlying test inversion dendteg. » above is the same for aif values, an empty
set would result when miyL (q)  fn¢,;a. It can be shown that minimizing (q) produces the Gaussian-LR
statistic to test the nonlinear restriction which de rggsnamely (2.11); general derivation are available in e.g.
Gourieroux, Monfort and Renault (1996).

Theorem 3.2 In the context 0f2.7) and the nonlinear hypothes{2.11) the con dence set estimate far
which inverts the statistit (q) de ned in(3.2) at thea-level is empty if and only if

LrapT = MingL(q) = L(GrapT)= 6=(1 @) F furna (3.17)

whereg is the minimum non-zero root of(&; Y) = ( XX) X% (Y%) 1Y% and

E’RAPT = Bé 160 QXZZ ! E)é 13 @)(21 . (318)

In other words, the con dence set estimate fpis empty if and only if the minimum distance LR-based
Hotelling statistic associated with (2.11) is signi cant when referred tofghe. ; cut-off which can be viewed
as a nite-sample bound cut-off point for this test. Observe thabincides with the minimum root of both
determinantal equations:

iBS 1B r(x%) %j=o0; (3.19)
iBPXX B r§=o0: (3.20)

Since the underlying eigenvector solution is not unique, we provide d fmo@.18) in the Appendix which
easily extends to the less restrictgti1l2) de nition and will allow us to link our results to existing related
works namely Kandel (1984) and Kandel (1986), and more recenthyaié&gen (2009). Our approach is
general and relates to important applications of reduced rank regrdmsed inference in econometrics; these
include limited information simultaneous equation and cointegration models; sgenB$1(1974, Chapter 7),
Davidson and MacKinnon (2004, Chapter 12), or Johansen (1998)rely on the following matrix algebra
result pertaining to an equation of the form

S11 Si2

S(1;z9°= 0,  jsj= 0, S= S S

(3.21)

wherez is them-dimensional unknown given gm+ 1) (m+ 1) matrix S, andSs is a scalarS;, = Sgl is
1 mandSyism mandis invertible. As summarized in the Appendix,

z= S,}Sy (3.22)

provides a unigue solution to this system.



Theorem 3.3 In the context of2.7) and the nonlinear hypothes{&.12), the minimum distance estimators
associated with the criteriob (q; f) de ned in(3.1) can be derived as

Luspr = minL(q; 1) = L(quapt: f uspr) = (3.23)

wheren is the minimum root of o
iBR.B® n(X%) =0 (3.24)

A - A 9. 0A . 1.n0a
whereR,:=S ! S, i8S, “i% land

E]UAPT: E)F:)nE)O ﬁXzz ! E)ﬁné ﬁXZl; (325)

~0 sa g
- (L; QuapT)BS tin
f = - : 3.26
UAPT 9§ 1, ( )
The formulas in (3.25)-(3.26) coincide with the solution obtained (using anottethod of proof) by

Shanken and Zhou (2007).

3.3 Finite-sample distributional theory

For some though not all inferential problems considered, we will assurfeltbeing mixture distributional
setting:
W=VZ (3.27)

whereV isT T, unknown and possibly random (in which case it is independez},@&ndZ isaT nmatrix
of i.i.d. n-dimensional standard normal variables if we denote thé-th row of Z asZP, then

Z, " N[0; 1]: (3.28)
Assumption (3.27) is suf ciently general and includes variatdimensional elliptically contoured distributions
and skew-elliptical distributions. Special cases of (3.27) include the naistebution
itid

W =2 " N[O In] (3.29)

and the multivariate Studentistribution withmdegrees-of freedom [denotedtds)].

The hypotheses associated with all statistics we aim to invert as introduced jmetfieus section fall
within the uniform linear class [see Dufour and Khalaf (2002), Beaulufour and Khalaf (2007) and the
references therein] of the form:

H[C; G; D] : CBG= D for knownC, G andD (3.30)

whereCisc kwithrankc; 0 ¢ k,andGisn g; with rankg. The restricted estimators in this case are:

B(C:G:D)=B xX 'clcixX) 9 YcBGc D)(G%G G% (3.31)
S(C; G;D)= U (C;G; D)X (C; G; D) ; (3.32)
U(C;G;D)= Y XB(C;G;D); (3.33)

where
S(C; G; D)= §+ SAG%Q YcBG D)c(xX) ¢ Y(cBG D)(GSG G% (3.34)
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Commonly used statistics including the LR and Wald criteria [see Berndt arid Gzi}/??), Gourgroux,
Monfort and Renault (1995), Dufour and Khalaf (2002) and therexices therein] to test[C; G; D] can be
expressed as

L (C;G;D)= TIn j§C;G; D)j=j§ = Téll In1 IiC;G;D) ; (3.35)
i=1

W (C;G; D)= Ttr S Y§C;G;D) § = Tii%; (3.36)
wherel = minf ¢; gg and/ 1(C; G; D) I n(C; G; D) are the eigenvalues &C; G; D) Y[S(C;G;D) $.

Clearly,! (C;G;D); i = 1;:::;1 coincide with the roots 08 1(C; G;D)[S(C;G;D) G%Sd where
C:G: D)= GBG+ CBG D °c(xX) 1c® ' cBG D : (3.37)

Solving for eigenvalues in question thus requires considering the deteralieguation

(SC;G; D) G%Q [9YC;G; D) =0: (3.38)

Theorem 3.4 In the context of2.7) and the null hypothesid[C; I,; D], the LR criterion simpli es to following
formL (C;1,;;D)=TIn I+ L(C;l,; D)  where
L(C;1n; D) =[C(XX) c9 YcB D)S Y(CB D)® (3.39)
The latter Theorem covers the linear hypotheses relevant to the APTuogd@bove since
He HLL g% 100 Hu ALY fidl H AP bl Ho HIsdil®1n 0 (3.40)
leading to 3 N
L(g:f)=LC (Lg% mfid: L(@=LC (Lg%no; (3.41)
Lb)=L sdiltmb; i Loj=L sfjl%In0 : (3.42)
Furthermore, th®APT approach amounts to a convenient selection of the postmultiplying n@&irix3.30).
Via this matrix, our analysis extends to any non-redundant combinatioriuwhseone may wish to consider.

The following Theorem establishes the nite sample distribution for the abmenealue based statistics with
emphasis on the role @&, which was not discussed in (Dufour and Khalaf (2002)).

Theorem 3.5 In the context of2.7) and under the null hypothesi$[C; G; D] in (3:30), the vector of the roots
of (3:38) is distributed like the vector of the roots of

GWOM o[X;CHWG | GWOM [X]+ M o[X;C)WG = 0 (3.43)

where G is the orthogonal ng matrix which includes the eigenvectors associated with the non-zerwelges
of JGGY and

M o[X; C] = X(XX) cYc(xX) 9 cx%) x° (3.44)
Furthermore, under assumptidB:27), the distribution in question follows that of the roots of
Z VoM o[X;C)VZ  1Z VoM [X]+ Mo[X;C)VZ =0 (3.45)

where Z isa T g matrix of i.i.d. g-dimensional standard normal variables, and is thusriamato B and J.
For the special case where € I,,, i.e. hypothesidi[C; I,;; D], the distribution in question follows that of the
roots of

WOM o[X; CDW [ WOM [X]+ M o[X;C)W =0 (3.46)

so invariance to B and J holds imposing or ignoring assumpt®a?).
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Two results emerging from Theorem 3.5 deserve discussion for théepmainder consideration.

1. The pivotal characterization (3.45) may be used to obtain nite sapypkdues using the Monte Carlo
test method [see.g. Dufour and Khalaf (2002) and Dufour (2006)] if the variates undedy can be
simulated.

2. Under assumption (3.27), the distribution of the roots will depen@ bat not onD, and depends 06
only through its rank.

So for the family of mixture distributions (3.27), the fact that null distributioepehd orG only through its
rank underlies and generalizes (beyond the deviation form) the invarpaoperty noted by Kleibergen (2009).
The fact that null distributions do not depend Brimply that the null distribution ot (b;) does not depend

on bj, so extending the above de ned test inversion beyond normality preséts quadrics-based analytic
solution. Indeed, it suf ces to obtain a simulation-based cut-off poinedemg on the assumed disturbance
distributions which will be the same for ali;. Dependence og will not be evacuated in the same way,
sinceq intervenes in the null distributions in questions Ma[X; C]. These distributions do not depend bn
which again supports partialling this parameter out at least from a statisticsgqrtive. Recall however that
f and whether it differs empirically from the hypothesized zero-betagglehich in our notation is the rst
component ofg] is an important empirical question in nance. Simultaneous inferencg andf remains
relevant. Our empirical analysis sheds more light on this matter using a wellrkkpitotypical data set.

To conclude, we review two useful approximations to the above nite saniptgliitions. Given normal
errors and if mifc;g) 2 [Rao (1973, Chapter 8), McKeon (1974)] then

(s 2.1 j§9%cG D)y

F(cq; 2 3.47
cg 1§95C. D)) (cg;{{s 2A2) (3.47)
{1=T k (g c+1=2); {2=(cg 2 =4 (3.48)

_ (PP HHE+g® 5 if 2+g? 5>0 .
{s= 1 otherwise ' (3.49)

The latter result holds as a reliable approximation wher(eng) > 2. The cutoffs we use to invert the statistics
considered in section 3 follow from these approximations. We also veritydingations from thd.i.d. or
normal errors assumption do not lead to notable size distortions in empirici\ane multifactor simulation
designs.

4 Empirical analysis: Fama-French and momentum factors

In our empirical analysis of a multifactor asset pricing model, we conduc giinulation study calibrated to
observed returns and factors, and (ii) a data-based assessmaetbofifricing.

We rst produce results for industry portfolios for the US, as in Beauééal. (2013). Following recom-
mendations of Lewellen et al. (2010), we also produce results for sitfolms, based on Fama and French's
data base. We consider monthly returns of 25 value weighted and equadiitec: portfolios from 1961 to
2010. The benchmark factors are: NIKT , the excess return on the market de ned as the value-weighted
return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the-oranth Treasury bill rate (from
Ibbotson Associates); ZMB (small minus big) de ned as the average return on three small portfolios minus
the average return on three big portfoliosHBYIL (high minus low) de ned as the average return on two value
portfolios minus the average return on two growth portfoliodyM (momentum), the average return on the
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two high prior return portfolios minus the average return on the two low peiturn portfolios; 5 RMW (ro-

bust minus weak) operating pro tability; and 6MA (conservative minus aggressive) investment, constructed
from conservative minus aggressive growth of assets for the seat.yFurther information on this data is
provided in the supplementary Appendix.

4.1 Simulation evidence

The experiment reported in this section is designed to assess three iBsaggshe above proposed CSs can
be conservative whek is large, so we aim to document their coverage properties. Second, die thi
performance of the inverted proposed tests when errors are fat-tdiledd, we assess the implications of
imposing and relaxing tradability restrictions; see Lewellen et al. (2010Paméranda and Sentana (2016)
for theoretical and practical discussions in this regard. To the bestrdfrmwledge, an identi cation-robust
assessment of this important equilibrium-based restriction is as yet undailab

We consider an empirically relevant design based on the above datadshiealRama-French three factor
model [with MKT, SMB and HML] in which returns are generated by (2.1) wRtR) or (2.3). We calibrate
designs using observed data on value-weighted portfolios coveringltrsaimple ph = 12 andT = 624], and
the last sub-period[= 12, T = 120]. The full sample exercise allows us to analyze our results relativeto th
literature, whereas the shorter sample documents performance as it &appl&sndard sub-period analysis.

The factors are drawn as normal with means and variance/covarialitwatesl to match the considered
sample. We set the factor loadings and the variance/covariance of distebto their OLS estimated coun-
terparts for the observed samplé.is obtained as the Cholesky root of this variance/covariance matrix. For
conformity, we also compute the cross-sectional two-pass OLS estimates oéndrbeta rate and risk price
[denotedg o], and their companion standard errors [den@&fqg o)]. We use these cross-section estimates to
calculateqg as in Shanken and Zhou (2007) and from there on, to initialize the simulatimesiying the size
study. To assess power, we set the parameter under the alternative as

q =qgot+step SHQ o) (4.1)

wherestepmeasures departure from the null hypotheses; the intercepgtesmalibrated in the same way. Of
course, for our empirical analysis, we do not compute con dence iakensing OLS estimates nor Wald-based
MLEs for that matter. All reported intervals invert the Hotelling-tests we psepl above. The cross-sectional
OLS estimates from the training samples, despite their imperfections, aresssed-anderstood prototypical
metric to initialize our data generating processes. For space considerdlienrsimulation values are not
reported here but are available from the authors upon request.

These settings are maintained for all analyzed tests, except in one cadechn wee provoke under-
identi cation by xing the MKT betas jointly to zero or one. We report test Sizes a worst scenario check to
con rm that no over-rejections occur despite identi cation failure. Tlgtutbance®\ are generated, in turn,
asi.i.d. normal, multivariate Student with 5 degrees of freedom, and multivariate GRAESINg in this case
the data generating process
1=2

W= G{7Z; G=(1 m mla+ mW W + mGy 3 (4.2)

whereZ; are uncorrelated-dimensional standard normal variables, so in this case the conditiomahearof
JW is given byS; with

§=3G %= (1 m  m)IP+ mIW W ;3% mIG 1° (4.3)
=(1 m m)IP+ mIW W 3% mS 4
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Table 1: Designs underlying reported gures

Empirical True Data Generating Process
Model R Tradable R 1 Non-Tradable
Inverted Statistic Inverted Statistic
RAPT PAPT UAPT RAPT PAPT UAPT
R1 L(g) Lo(q) L(g;f) | L(g) Lbo(q) L(qg;f)
Tradable Fig.1&7 NA NA Fig. 6 NA NA
Inverted Statistic Inverted Statistic
RAPT PAPT UAPT RAPT PAPT UAPT
R1 L(g) Lo(q) L(g;f) | L(@) Lo(q) L(g:f)
Non-Tradable NA Fig.3 Fig.2&8| NA Fig. 5 Fig. 4

Note — This table summarizes designs and methods in reported gures.BéHeRAPT L (q) [in (3.2)] andUAPT L (q; f) [in (3.1)]
statistics, wher® andU stands for “restricted” and “restricted”, impose and relax the assumiitaiR ; is tradable, respectively. The
PAPT Lp (q) statistic, wherd® stands for “partialling-out”, denotds(q) applied to a system om 1 returns in deviation fromy. In

this case, all factors are assumed non-tradable in estimating and testimgdie€but the resulting unrestricted constant is evacuated
from the statistical objective function as it is appliedio rp,i= 1;:::;n 1

which corresponds to a special case proposed by Engle and Ka9#5)( We usémy; m,) = ( :15;:80). The
considered inference methods a@ corrected for departures from thed. assumption nor from normality.
Tests and con dence intervals in what follows are at the 5% and 95% M¥esteport empirical rejections over
10000 replications for each parameter. In the results béqws the MKT factor.

The design of the simulation experiment is outlined in Table 1, whereas thikssrasel summarized in
Figures 1-8. In each gure, we report: (i) under the heading “Trusd®l”, the speci cation used to generate
data, and (ii) under the heading “Empirical Model”, the speci cation thas wansidered for estimation and
inference. The true and empirical speci cations differ only regardirggttbatment oR 1, as summarized in
table 1. Figure 7 replicates the design in 1 with a smaller sample size; we dgphcate all designs for space
considerations, so gure 7 aims to broadly illustrates sample size issuesleEign underlying gure 8 differs
from the rest in that it assesses our proposed tradability test; furthmrsdisns below will clarify the design
and its implications. In all gures, the parameters corresponding to the gplbthesis are identi ed via a
dashed vertical line. Results can be summarized as follows. In the Suppéyn@ppendix, we report the
proportion of empty joint con dence sets in the experiments underlying eaok, as well as the unidenti ed
experiment results.

1. Deviations from normalityln all designs, deviations from normality are not distortive in the following
sense: no over-rejections occur under the null hypothesis when.thaéormal assumption is violated. Recall
that tests rely on the above de ned F critical points regardless of the distits we use to draw simulated
samples. This result is noteworthy given the prevalence of multivariate@RA& Student-type assumptions
on disturbances in theoretical and empirical asset pricing work.

We also nd that power results with GARCH-based designs dominate thesiaausased ones which in turn
dominate the Studentease. On balance, a maximum of around 10% difference in power isvelolseetween
power curves, respectively. Power costs resulting from Studenbrs are expected, since our tests rely on
least-squares. Power results with GARCH deserve discussion. Rextaltshsizes are controlled even though
GARCH was not accounted for. We do not advocate hasty conclusigigesting that GARCH enhances test
performance. Instead, we nd that the GARCH case underscoresabtqal usefulness of our tests in realistic
settings: most likely, GARCH adjusts the scale of left-hand side simulated arelgive to the model's
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covariates, to better match the considered initializing parameters which relysemved data here. For further
insight on single equation least-squares based inference in the pregekRCH, see (Hamilton (2010)). Both
Studentt and GARCH errors do not seem to affect power ranking relative toféaformativeness.

2. Size of tests, and identi catiorEmpirical rejections under the null hypothesis do not exceed 5% in all
cases, including the under-identi ed case (reported in the supplemefpagndix). To quantify identi cation
in the baseline design, refer to table 2 [reported in our empirical sectiowpetltich summarizes joint factor
signi cance test$ and con dence sets for factor loadings, using the last sub-periodiofiataset. This is
relevant because these loadings drive the simulated design for otisalmgrle (withT = 120) which we view
as a “stress test” for our methodology. The main point we aim to underfworethis table as it relates to
our simulation design, is the following. While the (unrestricted) intercept issigoti cant at 5% using the
Hotelling test, all factors are signi cant at 5%. Nevertheless, all conakeintervals for the SMB beta cover
zero, whereas a small proportion of the intervals for the MKT or HML logsido not cover zero. Thus factors
are not necessarily redundant, yet joint information may not be strangsportfolios with shorter samples.
This turns out to matter as we will see below.

Although not obvious on rst sight, gure 8 contains a size study on aurestricted test, when applied in
deviation fromR 1. In this case, the intercept will measure deviations between the risk prite [@f, = gmkT]
and the zero beta ratg,], which will assess the tradable factor assumption. In this design, theypdtimesis
corresponds t@, = gukT = g, i.e, R1 is tradable. Departures from the null hypotheses \greepingg,
constant. Sincgyp = gmkT IS kept constant throughout, the curves correspondingiigr describe size and
not power. We thus see that size is well controlled again, a point wortha&sigiig since this test is new to the
(identi cation-robust) literature.

3. Power of tests, general ndingsExcept with the under-identi ed case [refer to the Supplementary
Appendix], all tests display good and empirically relevant power. Recallahoint three (or four) parameter
test is inverted here, which con rms that the bene ts of simultaneous infexés not offset by power losses
unless identi cation fails completely.

Comparing gures 1 and 7, we see that tests are powerful on all paresrmten when the sample size
drops from 624 to 120. Strikingly, power curves do not differ much leetwthe large and small samples.
In particular, and though information on other factors suffers to somengxtewer on the HML price with
T = 120 almost matches theE = 624 experiment. This leads us to analyze with further detail how power
differs across considered factors; refer to point 4, below.

The unrestricted and partialled-out tests perform exactly the same faoetek on risk price, a result
which lines up with the above theory [refer to (3.11)-(3.14)]. The mairaathge of our test compared to
the partialled-out one which relates to an asymptotic test proposed by (Kjeib€2009)) is the information
we provide on the model's intercept. See in particular gure 4. wheredsafimg-out evacuates this parame-
ter, our test provides tremendous power on this fundamental coef wigghout sacri cing any information on
the model's risk price. Further discussion of restricted versus unrestiiesting is discussed in point 5, below.

4. Power of tests, across factorBroadly, tests are more informative on one of the three factors relative to
the others. Given the historical debate on MKT beta, comparing gureslfédo gures 1 and 7 is particularly
enlightening. The former imply that the MKT risk is harder to test than the renwfairtors. In contrast, tests
on the zero-beta rate as depicted in the latter seem more powerful tharoth8848 and HML.

In all four gures true and empirical assumptions Ba coincide and conformable tests are applied. Thus,
both of these alternative ndings may initially appear plausible. Howeveeredis gures 4 and 5 relax trad-
ability of R1, gures 1 and 7 replicate empirical consensusRop i.e. that it is a tradable factor. This under-

Industry portfolios are used although (unreported) results with sizerfaconvey qualitatively similar information. With reference
to market betas, we assess joint deviations from one since the mart@tifaassumed tradable in this design, in which case bunching
up at one is more relevant to gauge identi cation.
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scores the usefulness of our restricted test which is depicted in guaed ¥, which in turn leads us to further
analyze the effects of restricting versus assessing the tradable festontion; refer to point 5 below.

Figures 1 and 7 also suggest that SMB is the least informative factoraddxve comments warning that
con dence sets on the SMB loading all cover zero apply in this case. Relpgiwer ranking are thus clearly
driven by the relative identi cation strength of SMB in this design, which webasize is based on observable
factors.

5. Power of tests, restricted versus unrestrict€ijure 8 (with the exception of results gt as noted
above) depicts the power of our proposed test which assesseR thattradable, or formally whetheg, =
gmkT = G- Departures from this null hypotheses vagykeepingg, constant. The power on non-market risk
prices is unaffected relative to the previous designs, whereas weernglgood power org. gy. Though
ex-ante decisions regarding some factors is possible, most crossiaébtised works in asset pricing tend to
leave the intercept unrestricted. Our approach provides an identi catlomst assessment of tradable factor
restrictions, which, to the best of our knowledge, is a new and usefiitibation.

Figure 2 documents the consequences of neglecting this assumption wblels it@omparing power curves
between gure 1 and gure 2, we nd that the risk price Bf1 bares all the cost as power is much weaker in
gure 2 than in gure 1, which results of course from disregarding kevant restriction. Our design suggests
that resulting power losses are sizable: the risk price of a tradable fatiarder to pin-down even in identi ed
contexts when an unrestricted cross-sectional constant is maintainieti, quanti es the consequences of an
important “pitfall” raised in particular by Lewellen et al. (2010) and moresrgly though in a GMM context by
Penaranda and Sentana (2016). In contrast to the traditional literaturexdings are based on methods that
are robust to the identi cation of all factors which provides new insights théohistorical debate surrounding
the role of the MKT factor in multi-factor models.

To further interpret the evidence on intercept tests, note that in the desegmlying gure 2, agy, is taken
away from its value under the null hypothegjgfollows conformably since the true model throughout imposes
0o = ¢ (hence the need for gure 8, to assess the test for inference on tieiepancy). So results fa =
g. can be interpreted as size [despite the misspeci cation], whereas tegtscon rms the excellent power
properties we noted in commenting on gure 4. Figure 3 illustrates the limitationartibfied-out tests: power
on all coef cients, again, coincides exactly with that of our unrestrictstlds depicted in gure 2, which we
noted to be way lower that in gure 1 for inference regardiig As an added major cost, partialling-out takes
away all sources of information on the validity of tradability assumptions, eligsfulness we quanti ed via
gure 8.

Figure 6 illustrates the consequences of imposing the traded factor assumipén it does not hold. Here,
what is indicated as a parameter value under the null is in fact a false naly, gie model falsely imposes
a restriction that does not hold. An important contrast with gure 2 in whiakecwe found that inference
regardingR 1 is only affected, here results show that spurious inferamcell model parameters results, with
notable size distortions as empirical rejections exceed 60%. A important magti;emark about this gure
(refer to the Supplementary Appendix for further details), the rejecti@depict actually correspond to empty
con dence sets in almost all simulations. This means that our companion magtedscare conveying evidence
of misspeci cation with very good power. This nding leads to clear prescriptions for emairigork: de-
spite the importance of imposing traded factor assumption, their empirical vatidatizains a must as serious
distortions will result otherwise. This reinforced the usefulness of oygsed intercept test, and more impor-
tantly, the usefulness of our built-in speci cation checks which will retumpéy sets when the model deviates
importantly from asset pricing equilibrium relations.

6. Size and power, and empirical resulffaken collectively, our simulation results suggest that the un-
bounded con dence sets we observe empirically as reported in secticarel.@ost likely driven by weak
factors. Inference problems are thus highly likely even outside the highndiomeal settings analyzed for ex-
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ample by Harvey et al. (2016) whekas by far larger than 5, the maximum number we consider. Our results
with a small number of commonly used factors also suggest that our coredsgts in which an identi ca-
tion check is “hard-wired” are extremely valuable in practice, since theyaldlv the researcher to qualify
non-rejections. An unbounded con dence set guards the ressmaiiim misreading nonsigni cant tests as
evidence in favour of models on which data is not informative. Our analygicgection method thus provides
an invaluable tool because it easily and surely con rms an unboundatiosy in contrast to e.g. numerical
searches that are typically subject to precision, convergence anabifiéyg constraints. On balance, results
with both sample sizes illustrate the worth of our analytical F-based motivatiorelighg on our proposed
analytical test inversion formula.

4.2 Empirical results

In the following discussion, signi cance refers to the 5% level and theiotsd test refers to treating MKT as
a tradable factor. Our empirical analysis builds on the prescriptions oéllenvet al. (2010). From a general
standpoint, our results can be summarized as follows.

Risk premiums are better identi ed with industry portfolios than with size portfolidhis result is not
driven by the number of the portfolios in question. In fact, when the wheletportfolios is used jointly
following Lewellen et al. (2010, Prescription 1), all considered und@hl models are rejected. Although
noteworthy and consistent with the discussion in Lewellen et al. (2010)attiee test may pose an unconven-
tionally high hurdle for goodness of t. We thus do not aim to overemphéabiese rejections. Instead, we view
these results as con rming the power of our testg axreases relative to.

An alternative and more fundamental argument is that stacking portfoliosaises dispersion of factor
sensitivities; in contrast, size sorted portfolios yield much more clustered theta their industry counterparts,
which ill-conditions the rank of the associateetamatrix thus compromising identi cation of risk price. Sim-
ilar distortive clustering results with value weighted portfolios whether wendigstry or size sorting, whereas
size sorted value-weighted portfolios are the least informative in ourdenesl tests. This is illustrated in table
2 which reports con dence sets for factor loading based on invettifty;) in (3.8), as well as zero-parameter
test based ol o; (3.6) under the heading Hotelling, corresponding to the last sub-pefiodralataset with
industry value-weighted portfolids. Though all factors seem relevant via signi cant Hotelling test, a small
number of con dence intervals for MKT excludes one, one of the inferi@a@ HML excludes zero and all in-
tervals for SMB cover zero, which suggests severe clustering. Fquihi®se, we base the bulk of our analysis
on equally weighted industry portfolios.

The Fama-French ve factor model is severely under-identi ed evenotia most informative checks,
namely our restricted test, industry portfolios, and over the whole samplee &ama and French (2015)
argue that HML in this model is unidenti ed, we repeat our analysis exclythis factor.

Analyzed results are reported in six tables; the appendix includes resthltgalue weighted portfolios and
further results with weaker identi cation evidence for completion.

Results imposing tradable MKT differ importantly from their unrestricted copatgs. Compare for ex-
ample Panel A to Panel B of table 3, and consider rst the 1971-198A.88ai-2000 subperiods in which we
reject the three-factor model via our restricted test (of Panel A). lwndr reference, these subperiods will
be denoted as thatypicalones, to underscore this rejection. In contrast to the restricted testpnmstricted
inference (in Panel B) fails to reject the model in these subperiods andveothat: (i) MKT is priced in both
cases, (2) HML is not priced whereas SMB is priced only in the 90s.

Does it seem reasonable to retain a model that ignores a key propertyrobitket factor? With reference
to Lewellen et al. (2010, Prescription 2), the unrestricted test seems aulole lio meet unless (among other

8We discussed these results above as they relate to our simulation design.
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Figure 1: Monte Carlo study: tests imposing tradable market factor
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Note — Dashed vertical lines denotes null parameter values. Empirjeatioms pertain to 5% tests associated with 95% con dence
sets: if the 95% set does not cover the null value or is empty, the regedeis considered signi cant. Parameters are calibrated to
OLS cross-sectional two-pass estimates from a training sample basedustry portfolios, Fama-French factors and monthly data,
1961-2010 hencé& = 624. See table 1 for further details on design and inverted tests. Whamamtor curve is depicted whereas
the legend refers to three cases, this implies that all visually coincide.
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Figure 2: Monte Carlo study: joint tests, market factor tradable assunrettaable
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Note — See notes to gure 1 and table 1. Results under the heggdingy, are obtained by executirig(g; f) on returns in deviation
from R 1 in which case tests on rigk are unchanged and tests biprovide inference o, gy, which is zero throughout this design
for all “steps” given the considered true model.

explanations) the zero beta rate differs anomalously from the riskdtee®@ur inference on the cross-sectional
intercept can inform in this regard, in contrast to the unrestricted tespfed in particular by Kleibergen
(2009)] that subtracts this intercept away. Let us thus refer to ther ifgpeel of table 5. For the subperiods in
question, we nd that despite notable estimation uncertain, the con dert@ngg does not cover zero which
con rms thatg, signi cantly differs from g... This discrepancy seems to be driving the rejection of the tradable
MKT model. Interestingly, we are not able to refute a zgroutside these subperiods.

Results with the Carhart model provide further insights on the above anosiaterpretation. Comparing
the upper to the lower panels of table 4, we nd that the unrestricted tesmspletely uninformative as the
con dence sets are utterly wide. In contrast, with a tradable MKT and agaspite evidence of estimation
uncertainty, we nd that MOM is priced only in the 1971-1980 and 19906ub-periods and these are the
only subperiods in which the restricted three-factors model is rejectecbasgp signi cantly differs from g..
The MKT risk itself is no longer priced in these subperiods, which standsarpscontrast with our unrestricted
three-factor based evidence. In addition, SMB is priced in the presgid®M in both subperiods, whereas
it is priced in our unrestricted three-factor model only in the nineties.

Divergences between restricted and unrestricted inference alsoviesethe restricted three-factors model
is not rejected. In particular, in the three factors model, the restricted testecthat SMB and HML are both
priced in the 1960s whereas the unrestricted tests cover zero. Similarly,dgpktars priced via the restricted
test in 1981-90 and not priced using the unrestricted counterpart, arghihe holds for SMB in 2000-2010.
Overall, aside from the market and unless the restricted model is rejetitéattars that are priced via the
restricted test are no longer priced when the tradable MKT restriction iseklaReferring to the upper Panel
of table 5 reveals no basis to refg= g, when the restricted model is not rejected, and as emphasized above,
MOM is not priced in these subperiods as may be checked again from piee Banel of table 4.

The above interpretation of the momentum effect may be quali ed as we ietempsults of the Fama-
French model with SMB, RMW and CMA over and above the MKT factor. Aghwhe Carhart model, the
unrestricted test is completely uninformative yet the model passes ouctexstest over all subperiods. The
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Figure 3: Monte Carlo study: partialled-out tests, market factor tradaslenaed non-tradable

n=12 T= 624 ri=ajit+ R+ F b +u;
Truemodel | &= go(1 ba) @ bir; %= qgwkr; % =(gsms; grmL)°
Empirical model a=g Gobir O bir
PAPT: Inverted Statistid (g) onr; rn with g = ( gy, g,‘é )°

Note — See notes to gure 1 and table 1. The dashed vertical line denotesltizeof the given parameter under the null.
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Figure 4: Monte Carlo study: joints tests, relaxing tradable market factor

n=12 T= 624

r=ait+ Ribipi+ F big + u;

True model
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Empirical model
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Note — See notes to gure 2.
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Figure 5: Monte Carlo study: partialled-out tests, relaxing tradable méa&tetr

n=12T= 624 r=ait+ Ribip+ F bip +
Truemodel | a=g, gbs R br; G=aqukr; G =(gsme; Grm)°
Empirical model a=0 Gobir O bir
PAPT: Inverted Statistid. (g) onr; r, whereq = ( g, gﬁ )0

Note — See notes to gure 3 and table 1.
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Figure 6: Monte Carlo study: test imposing tradable market factor whestradable

n=12, T = 624 ri= aqit+ Ribi1+ F bip + uj
Truemodel | a=g, gbs R br; G=aqukr; G =(gsme; Grm)°
Empirical model a=g(l b)) o b
RAPT: Inverted Statistit-(q); q=(go; o )°

Note — See notes to gure 1.
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Figure 7: Monte Carlo study: tests imposing tradable market factor, penfimenaith 10 years of data

n=12T= 120 ri=ajit+ Ribj1+ F b + y
Truemodel | a=gy(1 b1) F£br; %= awkr; G =(gswvs; Grme)°
Empirical model a=gy(l b)) @b
RAPT: Inverted Statistit-(q); g =(go; o )°

Note — See notes to gure 1 and table 1. The training sample used to gesienatation parameters is restricted to the last 10 years of
data.
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Figure 8: Monte Carlo study: joint tests, market factor tradable assunrettadable

n=12 T =624 ri=ait+ Ribip+ F bip + y;
Truemodel |a=g. gbir ®br; G=guxr; % =(gsws; Gum)°
Empirical model a=0g, Gbi o b
UAPT: Inverted Statistid-(q;f); g= go;g‘F) 0: f=(9 9%)

Note - See notes to gure 1 and table 1. Results are obtained by exetu@ing) on returns in deviation frorR ;. Under the null, we
hold g. = gy, and under the alternativg, moves away from the true value, wherggsloes not.
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following discussion thus focuses on the restricted model outcomes in tablgasestingly, results for the
atypical 70s and 90s stand in sharp contrast with those we obtained wsingr s model: MKT and one of the
RMW and CMA factors are priced whereas SMB is not; instead, recalSh#® and MOM are jointly priced
with the Carhart model, whereas the MKT factor was not.

The obvious question is, then, whether observed factors représdenor anomalies. Yet any interpretation
of our ndings in this regard is hasty, given our focus thus far on theial subperiods. Outside these
subperiods, interpretations in any direction are severely hampered hotieepernicious identi cation failures
we observe therein. Indeed, over and above MKT and SMB, the additit®©M and HML yields completely
uninformative sets (the real line) prior to the 70s and so does the additiBMy¥ and CMA. In the 80s,
the Carhart model is uninformative whereas MKT and RMW are pricegitleanbounded sets. In contrast,
post 2000, SMB is the only priced factor in the Carhart model wherea®thdactor Fama-French model is
completely uninformative.

In sum, four key results are worth emphasizing. First, the three Fama#-factors are con rmed to be
priced concurrently only before 1970. From there on, the factoreitgier: (i) jointly rejected in the sense
that anomalies remain despite some evidence of pricing, or (ii) are weakbypgag, in the following sense:
we nd no clear indication on which among the three is priced or not. Seawitd,regards to the historical
debate on anomaligswe do not nd convincing and uniform evidence favoring any factlative to MKT.
Third, MOM is not necessarily irrelevant despite its adverse effect entid¢ation broadly, and may possibly
proxy an outstanding anomaly relative to the three-factors model in thend®0s atypical subperiods. Fourth,
heterogeneity is not suf cient to distinguish a priced momentum anomaly frantaility or investment as
presumably non-diversi able risk drivers.

Size portfolios preserve some of the above ndings, though globallyeewie weakens as identi cation is
visibly weaker. The latter nding reinforces the argument in Lewellen e2010, Footnote 1), namely that
size and book-to-market sorted betas on MKT are close to one, a faceas to empirically endure since
Fama and French (1993).

Notwithstanding almost inevitable resulting under-identi cation, table 7 broadtlerscores the following,
relative to industry portfolios. First, the restricted three-factor model i®nger rejected in the 70s and 90s;
in fact it passes our test overall. Interestingly, the three factors attyjpiiced in the 70s, whereas in the 90s,
the only priced factor is MKT. Second, in all subperiods expect the 882800s in which our con dence sets
on MKT risk are the real line, MKT is priced. Third, prior to the 90s, HML I&/ays priced. Fourth, the data
is not informative post-2000s, a result shared to some extent with indaestis;

The addition of momentum provokes under-identi cation since almost all dence sets for risk prices
are the real line, and so does unrestricting the intercept with and without ntométhe latter results are not
reported for space consideration). The same holds when adding RM A, with and without HML; a
sample of these results is reported in the Appendix.

Further results including conditional models are reported in the supplemeamupendix. Results con rm
that the identi cation problems in this literature are not solved by standardioning, which seems instead
to exacerbate complications.

5 Conclusion

One of the key goals of asset pricing is to identify factors that drivetastgns and are associated with risk
premiums. This paper contributes to this literature via an identi cation-robuitadelogy to assess pricing,

9See Campbell et al. (1997, Chapters 5 and 6), Fama and Frenct) (B&®old (2004), Campbell (2003), Sentana (2009) and the
recent insight in Fama and French (2015).
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Table 2: Simultaneous con dence sets for factor loadings
2001-2010, Value-Weighted Industry Portfolios

Eqg. Intercept MKT -1 SMB HML
1 [-.0062,.0129] [-.5969,-.1868] [-.4630,.2560] [-.0498,.5577]
2 [-.0214,.0180] [-.0563,.7905] [-.2121,1.2723] [-.08D8,737]
3 [-.0079,.0127] [-.0405,.4033] [-.1699,.6082] [-.07GB74]
4 [-.0145,.0298] [-.6664,.2849] [-1.0358,.6319] [-.464945]
5 [-.0063,.0147] [-.4489,.0022] [-.5510,.2397] [-.07G@32]
6 [-.0095,.0113] [.1698,.6156] [-.0586,.7223] [-1.2226, -.5623]
7 [-.0147,.0148] [-.2125,.4201] [-.9030,.2062] [-.58B563]
8 [-.0146,.0188] [-.7735,-.0573] [-.7852,.4705] [-.2415,.8196]
9 [-.0102,.0113] [-.4224,.0396] [-.1606,.6493] [-.243809]
10 [-.0118,.0122] [-.5823,-.0659] [-.8394,.0660] [-0.334278]
11 [-.0156,.0062] [-.1480,.3206] [-.4751,.3463] [.2860,.9802]
12 [-.0103,.0077] [-.1198,.2679] [-.3047,.3750] [-.09@9,76]
Hotelling 1.2131 16.9573 5.4253 23.2133
p-value .284 .000 0.000 0.000

Note — See notes to table 3 for the de nition of the considered sample. &féepported are the 95% joint (across equations) con dence
sets for the coef cients (in turn) of each portfolio regression numtbdrd 2. The inverted test in each casé {®;) de ned in (3.5)

to testH; (2.20). The Classical Hotelling joint signi cance test with conformingaiese is reported at the bottom of each column to
assess each ¢fp; (2.21). j = 1 provides joint inference on the unrestricted regression intercefisasathe unrestricted regression
is in deviation from the tradable factor, here MKJT5= 2 provides joint inference on market betas in deviation from one,jand®; 4
provide inference, in turn, on SMB and HML betas. Con dence sets id are those that do not cover zero.
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Table 3: Con dence sets for risk price: industry portfolios and thregofamodel

riitg=(R1 itg)biu+(F itg)be +u; i=1L:n
PANEL A q=(9y )%= (gmkT; Gsvs; grmL)°
MKT SMB HML
10 4 F amKT F dswvB F grmL
61-70 | 38*  [437,-55] | 33* [-17,14] 53+ [-46,41]
71-80 30 ? 43 ? 33 ?
¥, 1 ¥ -11
81-90 44* 1 ¥ 94 -16 R 56* 1 ¥ 9
[ [1156¥] [ [611¥]
91-00 103 ? 4 ? 29 ?
00-10 | 14 [-79,245] | 57* [-146,3] 40  [-41,178]
o itg=(R1 itg)ba+ F itdg® bie +u; i=1:::n

PANEL B q=(0p &2 )=(gukT; gsme; GHmL);

g partialled-out

MKT SMB HML
10 4 F qguKT F gsvB F gHML
61-70 | 38  [642,-14] | 33 [-11, 83] 53 [-64, 74]
71-80 | 30*  [-621,-54] | 43 [26,158] | 33  [-137, 160]
8100 | a4r 1 ¥:i-198 1 ¢ R 56 R

[ [807¥[
91-00 | 103+ 1 ¥ 433 | 4 1 ¥-1499 o, ] ¥ -28]

[ [3087¥[ [ [97¥] [ [-24¥]
00-10 | 14  [-100,1226] | 57 [1089,66] | 40  [137,192] |

Note — Sample includes monthly observations from January 1991 to ece210 on the US. Series include 12 equally weighted
(EW) industry portfolios as well as US factors for market (MKT), si3®B), book-to-market (HML). Con dence sets are at the 5%
level. F is the factor average over the considered time peripdaptures factor pricing as de ned in (2.15). * denotes evidence of
pricing at the 5% signi cance level interpreted as follows: given the reggbcon dence sets, each factor is priced if its average is not
covered. In Panel A, the inverted testli§q) de ned in 3.2. This test follows oURAPT approach wher® stands for “restricted”
implying that tradable factor constraints are imposed, herR gnin estimating and testing the model. In Panel B, the inverted test
L(q) is applied on a system an 1 returns in deviation from,. This test follows ouPAPT approach wherP stands for “partialling-
out” implying that all factors are assumed non-tradable but the resultirestricted constant is evacuated from the statistical objective

function as it is based on
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Table 4: Con dence sets for risk price: industry portfolios and foatdamodel

i itg=(R1 itg)bu+(F itg)be +u; i=1:i;n
a= 9o 9,? = gmKT; gsmB; GHML; 9 MOM
MKT SMB HML MOM
104 ] F qMKT F dsmB F gHML F q Mom
61-70 38 R 33 R 53 R 73 R
71-80 | 30  [-300,232] | 43*  [62,-17] | 33 [-87,111] | 113* [-333, 98]
81-90 44 R -16 R 56 R 66 R
91-00 | 103 [-617,123] | 4*  [-387,-20] | 29  [-267,36] | 112* [-995, -45]
00-10 | 14  [124,258] | 57*  [212,5] | 40 [52,204] | -3  [-554,129]
roitg=(R1 itgbu+(F irg)br +u; i=1:::5n
PANELB q=(0y &)= (gmxT;gsve; GrmL; g mom); g partialled-out
MKT SMB HML MOM
104 ] F qgNMKT F dsmB F gHML F q Mom
61-70 38 R 33 R 53 R 73 R
71-80 | 30  [654,316] | 43  [53,166] | 33 [143,230] | 113 | [-499, 286]
81-90 44 R -16 R 56 R 66 R
i ] ¥; 112 ] ¥; -764
91-00 | 103 [ [1959¥[ 4 [ [-344¥[ 29 R 112 R
00-10 | 14 [148,1552]| 57  [-1502,75] | 40 [172,227]| -3 | [-1547,108]

Note — See notes to table 3. The considered model is the four factor thseavket (MKT), size (SMB), book-to-market (HML) and

momentum (MOM).
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Table 5: Industry portfolios, testing the traded factor assumption

ri Ri=ait+R1idi+F b + u; i= 1
a=g Gd br; d=bi L g=0 &
q=(90 R )=(qmkT; Gsms; GHmL)
CTE MKT SMB HML MOM
10 * 9 F qmKT F gsmB F qHML F g mom
61-70 | [8,101] | 38* [777,9] | 33 [17,94] | 53 [81,82] | - -
7180 | [5,217] 30*  [-715,-35] | 43  [34,178] | 33 [-179,173]| - -
81-90 R 44* 1 ¥; -164 -16 R 56 R - -
[ [707¥]
91.00 | 1 ¥: 88 e 1 ¥i-363 1] ¥ 984 g R - -
[ [150¥%] [ [1950¥[ [ [58¥]

00-10 | [-1876,115] | 14  [121,2768]| 57  [2461,84] | 40 [-254,245]| - -

ri Ri=ait+ Rdi+F bg + u; i=1:0m

a=g Gd ®br; d=bi L g=0 &

a= o Q,g = gmKT; gsmB; GHML; 9 MOM
CTE MKT SMB HML MOM
10 4 9 F qmKT F gsmB F gHML F g mom
61-70 R 38 R 33 R 53 R 73 R
71-80 | [13,224] | 30  [803,430] | 43  [62,182] | 33 [-186,260] | 113 [-586, 375]
81-90 R 44 R -16 R 56 R 66 R
91.00 | 1 ¥ M40y T ¥IISA ] ¥ 600 o R 112 R
[ [-111¥] [ [1590¥%] [ [-407¥[

00-10 | [-3548,135] | 14  [170,5023] | 57  [4838,94] | 40 [-398,323]| -3  [-4568, 129

Note — See notes to tables 3 and 4. The inverted tdsfqsf) is de ned in (3.1). This test follows oWAPT whereU stands for
“unrestricted” implies that factors are assumed non-tradable in estimatitidesting the model. The test is appliedron R1 so
inference orf allows to assess whethgg = g,: the hypothesis thaR 1 (here, MKT) is traded is rejected at the 5% level when the
con dence set orf excludes zero.
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Table 6: Con dence sets for risk price: industry portfolios and vetta model, excluding HML

rn itgp=(R1

ITg)bin+(F

iTR )biE + ui;

i=1:::;n

PANELA g =(9y 9 )°=(gmkr; gsms; Grmw; gema)®

MKT SMB RMW CMA
10 4 F qmKT F QsmB F GrMW F gcma
63-70 28 R 57 R 2 R 22 R
180 1 ¥ 79 ] ¥; -1517 . ¥ 20138 | o ] ¥ 210

[ [34937¥] [ [-79¥] [ [14¥] [ [14260¥]
81-90 | 44 1 ¥, -79 20 1 ¥;-1] 39% 1 ¥, -79 55 ] ¥, -143

[ [82¥] [ [42¥] [ [95¥] [ [-6¥]

91-00 | 103*  [1568,85] | 3  [277,237] | 32  [-118,362] | 30*  [591,-8]
00-10 14 R 65 R 44 R 35 R

oitg=(R1 itgobu+(F itgd)be +u;;  i=1L:in

PANELB q= gy o =(qwmkr;dsme; Grmw; Goma); G partialled-out

MKT SMB RMW CMA
10 4 F quMKT F gsmB F grRMW F gcma
63-70 28 R 57 R 2 R 22 R
71.80 | 30+ | ¥ 28 g, 1 ¥ 167 ] ¥; -1047 s 1 %202

[ [1108¥] [ [282¥] [ [-118¥] [ [664¥]
81-90 44 R -20 R 39 R 55 R
91-00 | 103 | ¥ 109 1 ¥ 663 1 4 R 30 R

[ [1790¥%] [ [-238¥[
00-10 14 R 65 R 44 R 35 R

Note — Sample includes monthly observations from July 1963 to Deceri€rch the US. Series include 12 equally weighted (EW)
industry portfolios as well as US factors for market (MKT), size (SMBD tability (RMW), and investment (CMA). Results in Panel
A rely on ourRAPT approach, and those in Panel B orR&PT counterpart; see notes to notes to table 3 for further de nitions.
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Table 7: Con dence sets for risk price: size portfolios

i itg=(R1 itg)bia+(F itd® )b + u; i=1::;n
d=(0: R )= gukT;dsve; GHmL
MKT SMB HML MOM
10 4 F gmMKT F gsmB F qHML F g Mom
61-70 | 38* ] ¥, -256 1 ¥, -87 53¢ ] ¥, -12§ i i
[ [221¥] [ f[-71¥[g [ [1008¥][
igo | mr ) ¥i229 | . 1¥253 | ] ¥ 30724 | ]
[ [25121¥] [ [9972¥] [ [639¥[
81-90 | 44 R 16 R ser | ¥i 881 : :
[ [975¥]
91-00 | 103* [14492,72] | 4 [732,649] | 29  [-3055,886] | - .
00-10 14 R 57 R 40 R - -
i itg=(R1 itg)bu+ F itg br +u; i=1:;n
a= 9o ng) = gwmKT; gsmB; GHML; 9 MOM
MKT SMB HML MOM
10 4 F gMKT F gswvB F gHML F q Mom
61-70 38 R 33 R 53 R 73 R
71-80 30 R 43 R 33 R 113 R
81-90 44 R -16 R 56 R 66 R
91-00 103 R 4 R 29 R 112 1 ¥; 3029
[ [5573¥]
00-10 14 R 57 R 40 R 3 R

Note — Sample includes monthly observations from January 1991 to hecet@10 on the US. Series include 25 size sorted equally
weighted (EW) and value-weighted (VW) portfolios as well as US factrsfarket (MKT), size (SMB), book-to-market (HML) and
momentum (MOM). See notes to tables 3 and 4 for further de nitions aptiexpinference methods.
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regardless of whether betas are jointly informative or not, or heteragegaough to identify risk price.,e.,
to identify factors that represent a non-diversi able source of rigker than an idiosyncratic association with
returns.

As with Lewellen et al. (2010), our methodology is applied to models with a garehrelatively small
number of popular factors. The motivation [see Lewellen et al. (2016tnete 3)] may be traced to Fama
and French (1993) whose main message is that relevant risks can be szedrbg a small number of factors.
Since then, the literature does not necessarily dispute this fact, in theteahs®ore is not necessarily viewed
as better. Instead of a consensus view on a common set of explanationg fa plethora of different although
related candidate factors has been proposed, which raises enduiiical puzzles, statistical concerns and
ultimately, spurious pricing considerations [Harvey et al. (2016)].

The main message in both strands of the literature re ected by Lewellen 20a0) (on analyzing models
given a small number of given factors), or Harvey et al. (2016) @wior searches globally) is that more
stringent practices are needed. Our methodology serves this punposbustifying inference on risk price,
controlling for the quality of available betas. Whether practice moves towamnds parsimonious ways of
summarizing information on factors, or towards reliance on test assetsdmgtst portfolios, our message is
that statistical inference on risk price should not take identi cation fontga.
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Appendix

A Eigenvalue-based con dence sets
Equation (3.21) may be re-expressed as

St S122 = 0; (A.1)
So1t S22 = 0 (A.2)

and solving (A.2) forz leads to (3.22). Substitutinig into (A.1) yieldsS;; 8128221821: 0. Assuming that
S11is non-singular, on recalling th&; 8128221821 is a scalar and using the formulae for the determinant of
partitioned matrices

jSi=iS2d S11 S125,,S21 = iS2d St S125,0S01

we thus see that i satis es (A.2) then it satis es (A.1).

We next summarize the solution of (3.10) from Dufour and Taamouti (2@®%)ections based con dence
sets for any linear transformation sfof the formw® can be obtained as follows. L&t= A,JA),; D=
A12A221A12 A11. If all the eigenvalues ofy; [as de ned in (3.11)] are positive s, is positive de nite then:

q_— q_—
CS(w%2)= wA D whlw;whA+ D whlw ; if D O0; (A.3)
CS(w%2)=?; if D<O: (A.4)

If Az is non-singular and has one negative eigenvalue then: i} w < 0 andD < 0:
q

- q__
CS(w%2)=  ¥;wA D wilw [ whA+[D wAJ w1 D wijw ;+¥ ; (A.5)

(ii) if WA w> 0orifwA,jw OandD O then:
CS(W%) = R; (A.6)

(iii) if WA w= 0andD < 0 then: )
CSa(w2) = Rnf wAg: (A7)

The projection is given by (A.6) iy, is non-singular and has at least two negative eigenvalues.

B Proofs

Proof of Theorem 3.1.Equations (A.3) - - (A.7) applied witl as de ned in (3.12) imply that an unbounded

solution to the problem of inverting the test de ned by (3.2) and (3.7) woatdioif Ay, [refer to the partitioning

in (3.11) and (3.13)] is not positive de nite. In this case, the diagonahtef Ay, is given by DIAGA;,) =
K OWwhere

F = sdiBS BN sdlIXX) tadi]ind f”t;;"?a: (B.1)

Clearly, if any of the Hotelling tests based bpn i 2 f2;:::; kg [as in (3.5) and using the distribution in (3.7)]
is not signi cant at levela, then by the de nition ofL; andF, Li(tn)=n< fyt,:a, F < 0, in which case
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A cannot be positive de nite. On comparing (3.12) and (3.14) we seeltf@h 1)=(n 1) fy 1¢, 14,
i 2 f2;:::;kg holds for the problem of inverting the test de ned by (3.1) and (3.7) ag@essary but not
suf cient condition to obtain bounded CSs.
Proof of the minimum distance computations in Theorems 3.2 and 3.3ming L (g) is the minimum root
[denotedf ] of the determinantal equation (3.19) so the minimization problem can be casteagiation of the
(3.21) wherez = g and

s=BS B F(x%) % (B.2)
Sii= a8 1a kL, Spp= 89, = &% 160 x2Sy = bS 10 9x?2, using the partitioning (2.10). Sprapt
obtains applying (3.22) leading to (3.18).

Turning toL (q; f), we have

TL(q;f) _  2(3,99BS tin+ 2fi 0S tiy

B.3
nf (L gY(XX) 11 q9° (B:3)

and the (non-zero) value éfwhich sets the latter partial derivative to zero is

(1, q%éé Yin
(@)= o5 1 (B.4)
Substitutingf (q) in (B.3) leads to
1,98 St §ii, % L, %1 BYL ¢9°

L(q:f (q)) = (1,99 In IpS “In Ip 41; 9 (B.5)

(L g(XX) 1(1;g9°

which proves 3.23. From there on, mipL (q; f) requires one to solve a system of the (3.21) form with g,
and

s=BS&! §1%,i% %, 'S 1B Ax%) ! (B.6)
Spu=4a81 §1%,i% ¢, 'i%51a Axt (B.7)
Sp=9% =481 §%, %Y, ‘0510 A2 (B.8)
Sp=b81 §1, % L, 98 1[0 Ax?2 (B.9)

using the partitionings (2.10) and (2.9). So a point estimateqf{lﬂenoted&UApT] obtains applying (3.22)
leading to (3.25) and an point estimate Fothus follows using (B.4) leading to (3.26).
Proof of Theorem 3.5.Consider the following decomposition 6°%SGandS:

G%SG= GCUOWM [X]WIG; (B.10)
CBG D=C(X%X) X°xB+WXP G D=CBG D+C(X%) XWJIG; (B.11)
so under the null hypothesBBG D = C(X%X) XW JG and
S(C;G;D) GBG= GUWM ([X; CW JG; (B.12)
S(C; G; D) = GUWO(M [X]+ M o[X; C)W IG; (B.13)

which implies that (3.38) corresponds to:

JGOWOM o[X; CHWIG 1 GUWOM [X]+ M o[X; CYWIGj = 0 (B.14)

A-2



Sincel is invertible andG has full column rank, the singular value decompositiod%f gives
J%G = GD¥?X (B.15)

whereD is a g-dimensional diagonal matrix which includes the non-zero eigenvaludSa@®%, G is the
n g matrix which includes the corresponding eigenvector&88 = |4 and X is the g-dimensional matrix
X = D ¥2GU%G so thatXX= 4. Replacing the latter expressions in (B.14) leads to (3.43). In particular,
under assumption (3.27), (3.43) reduces to (3.45) wHere ZG and in view of (3.29), the rows dIG are

94N(0; 1g). 1t follows that the null distribution of all test statistics which depend on tita dia the roots of
(3.38 are invariant td andJ. WhenG = |, (B.14) takes the form

JIWOM o[X; CDW P 1 IWOM [X]+ M o[X;C)W I = 0 (B.16)

which leads to (3.43) sB andJ are evacuated.
Proof of Theorem 3.4.GivenH|[C; I,; D] the sum of squared error ratio simpli es to

iSC; G;D)j5S = jla+ S }(CB D)Jc(x%) ¢ YCB D)j
= jle+[C(X%X) 9 YcB D)S YCB D)J (B.17)

using a well known result on determinants, which leads to (3:39).

1%Fgr anyn mmatrixSand anyn nmatrixU, jln+ SUj = jIm+ US; see e.g. Harville (1997, section 18.1, p. 416).
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Arbitrage pricing, weak beta, strong beta:
identi cation-robust and simultaneous inference

Marie-Claude Beaulieu, Jean-Marie Dufour and Lynda Khalaf

Supplementary Appendix

This appendix reports further details on data, simulations and empiricétis;efeu completion.

S.1 Further details on data

Data on industry portfolios for the US, as in Beaulieu et al. (2013), ctnsfanonthly returns from 1961 to
2010, obtained from the University of Chicago's Center for Reseiar8ecurity Prices (CRSP), on standard 12
portfolios of New York Stock Exchange (NYSE) rms grouped by stamdavo-digit industrial classi cation
(SIC) M For each month the industry portfolios include the rms for which the returicegper common share
and number of shares outstanding are recorded by CRSP. Equallplaredweighted portfolios are analyzed.

The size portfolios from Fama and French's data base are constrisctellosvs. The portfolios which are
constructed at the end of June are the intersections of ve portfolioaddron size (market equity) and ve
portfolios formed on the ratio of book equity to market equity. The size lp@iaks for years are the NYSE
market equity quintiles at the end of June of yeafhe ratio of book equity to market equity for June of year
sis the book equity for the last scal year endsn 1 divided by market equity for December of yesar 1.
The ratio of book equity to market equity is NYSE quintiles. The portfolios tdy &f yearsto June of year
s+ 1 include all NYSE, AMEX, NASDAQ stocks for which market equity data isitable for December of
years 1 and June of yeas, and (positive) book equity data fer 1.

Fama and French benchmark factors, SMB, HML, RMW and CMA aretoaected from benchmark port-
folios that do not include hold ranges and do not incur transaction cohis portfolios for these factors are
rebalanced quarterly using two independent sorts, on size (markiey, édi), book-to-market (the ratio of
book equity to market equity, BE/ME), pro tability (annual revenues minast®f goods sold, interest ex-
pense, and selling, general, and administrative expenses, all diwdeddk equity at the end of scal year
s 1) and investment (the growth of total assets for the scal year endinglidigided by total assets at the
end ofs 1). The pro tability and investment factors, RMW and CMA, are constrdétethe same way as
HML except the second sort is either on operating pro tability (robust miwaak) or investment (conservative
minus aggressive). As HML, RMW and CMA can be interpreted as aesragpro tability and investment
factors for small and big stocks.

For the construction of the MOM factor, six value-weighted portfolios fatroa size and prior (2—12)
returns are used. The portfolios, which are formed monthly, are the éatesss of two portfolios formed
on size (market equity, ME) and three portfolios formed on prior (2—&&)rn. The size breakpoint (which
determines the buy range for the small and big portfolios) is the median NY Sketrequity. The BE/ME
breakpoints are the 30th and 70th NYSE percentiles. The monthly prioR)2eturn breakpoints are also the
30th and 70th NYSE percentiles.

11The sectors studied include: (1) petroleum; (2) nance and real e@jteonsumer durables; (4) basic industries; (5) food and
tobacco; (6) construction; (7) capital goods; (8) transportation;tfBiies; (10) textile and trade; (11) services; (12) leisure.



Table S.1: Proportion of empty con dence sets in reported gures

Step
Figure | Errors 0 -4 -3 -2 -1 1 2 3 4
1 Normal .0110 .0099 .0098 .0093 .0102 .0112 .0113 .0115 .0121

Student t(5)| .0103 .0110 .0112 .0101 .0103 .0098 .0094 .0095 .0098
GARCH .0124 .0124 .0120 .0123 .0127 .0130 .0126 .0122 .0120
2 Normal .0055 .0050 .0049 0042 .0044 .0060 .0065 .0068 .0070
Student t(5)| .0051 .0053 .0052 .0055 .0052 .0052 .0052 .0047 .0049
GARCH .0068 .0054 .0060 .0066 .0067 .0062 .0066 .0059 .0064
3 Normal .0100 .0086 .0089 .0091 .0097 .0106 .0105 .0108 .0119
Student t(5)| .0084 .0090 .0093 .0086 .0084 .0085 .0084 .0082 .0084
GARCH .0108 .0098 .0103 .0106 .0109 .0110 .0106 .0104 .0106
4 Normal .0055 .0050 .0049 .0042 .0044 .0060 .0065 .0068 .0070
Student t(5)| .0053 .0051 .0052 .0055 .0052 .0052 .0052 .0047 .0049
GARCH .0068 .0054 .0060 .0066 .0067 .0062 .0066 .0059 .0064
5 Normal .0100 .0086 .0089 .0091 .0097 .0106 .0105 .0108 .0119
Student t(5)| .0084 .0090 .0093 .0086 .0084 .0085 .0084 .0082 .0084
GARCH .0108 .0098 .0103 .0106 .0109 .0110 .0106 .0104 .0106
6 Normal .6683 1.0 1.0 1.0 9700 .9954 1.0 1.0 1.0

Student t(5)| .5854 1.0 1.0 1.0 9553 .9930 1.0 1.0 1.0

GARCH 7690 1.0 1.0 1.0 9811 .9973 1.0 1.0 1.0

7 Normal .0095 .0096 .0091 .0091 .0094 .0076 .0073 .0069 .0069
Student t(5)] .0051 .0056 .0055 .0054 .0054 .0039 .0037 .0032 .0039
GARCH .0111 .0107 .0106 .0107 .0104 .0093 .0083 .0074 .0084
8 Normal .0055 .0049 .0053 .0050 .0055 .0054 .0060 .0062 .0056
Student t(5)] .0051 .0055 .0058 .0056 .0052 .0046 .0047 .0047 .0049
GARCH .0068 .0061 .0070 .0069 .0073 .0066 .0062 .0058 .0055

Note — Numbers reported are the proportion of empty con dence sathwbrrespond to tests that reject the speci cation.

S.2 Further details on simulation results

Table S.1 reports the proportion of empty joint con dence sets in the expetimmderlying each gure in

the main text. Table S.2 presents the unidenti ed experiment results. Repesigits in the latter table are
restricted to size, since power is expected not to exceed size in this taskeye veri ed. These results con rm

that even when identi cation fails, the size problems documented in this literafitihestandard methods are
solved via our proposed tests.

Perhaps equally important here is our nding in table S.1: inverting the tesirtipses tradability when
it does not hold produces a very large proportion of empty sets, which isnpbeiccessfully detects the false
assumptions. Taken collectively, results reinforce the prescription irellewvet al. (2010) regarding tradable
factors particularly because we provide a method to validate this assumption.
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Table S.2: Monte Carlo study: tests in unidenti ed models

n=12 T =624 ri= ait+ Ribj1+ F big + u;
Model a=0gy(l b)) @R bir; d= gukr: I =(Ggsme; g rm)°
Inverted Statistic L(Q); g= gy & 0
MKT betas = zero MKT betas = one
Errors Normal Student(5) GARCH | Normal Student(5) GARCH
gmKkT .0199 .0185 .0207 | .0199 .0185 .0207
gsmvB .0190 .0198 .0209 | .0001 .0004 .0003
gHmL .0203 .0191 .0218 | .0003 .0005 .0003
Rejected .0115 .0101 .0124 | .0000 .0002 .0002
Model a=0 Obir G bir; %= gmkr: G =(gswvs; grmL)°
MKT betas = zero
Inverted Statistic| L(q;f); g=(gn )% f = g L(g) onri rn; g=(gyaR)°
Errors Normal Student(5) GARCH | Normal Student(5) GARCH
gmkT .0114 .0103 .0124 | .0189 .0163 .0201
gsmB .0000 .0001 .0000 | .0000 .0002 .0001
gHmML .0000 .0002 .0000 | .0001 .0003 .0002
f .0000 .0002 .0002 - - -
Rejected .0000 .0000 .0000 | .0000 .0001 .0001

Note — Numbers reported are test sizes, for 5% tests, given modelsah igbnti cation problems are provoked by setting MKT betas
jointly to zeros or ones. All other model parameters and inverted te&epteas in the original designs. For this design, (unreported)
power curves remain below 5%.

S.3 Further details on empirical results

Here we provide results with value-weighted industry sorts, size sortgaima-French ve factor model and
a representative set of results using conditioning information.

We examine conditional models estimated over the full sub-period, using ltteefwf industry and size
portfolios, and the (standard) conditioning variables as in Beaulieu €@07§. Assuming all betas are time
varying returned real lines, the same holds when each set of portfossuged on its own which is not
surprising, given the number of regressors to add relative to the saipgle s

We report a sample of results assuming that the MKT beta varies as a funttioa difference between
the one-month lagged returns of a three-month and a one month. This sangpeesantative is the following
sense: as the conditioning information changes, con dence sets jumpeingpty to severely unbounded a
result we observed even with a single benchmark conditional model.

Two points are worth emphasizing from tables S.10 and S.11. First, betcaiustry and size sorted
portfolios are used jointly, the advantage of equal or value weights netgmgvail. This reinforces our earlier
ndings in this regard. Second, the conditional model in question doegamn@twell, in view of its rejection
with value-weighted portfolios. Given the extensive instruments seara@xperimented with leading to these
tables, we do not aim to over-emphasize these results, aside from theifgiload yet empirically important
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message. The identi cation problems in this literature are not restricted tonditmmal asset pricing, and
are not solved by standard conditioning which seems instead to exacedmagdicationst?> Our ndings
thus endorse identi cation-robust methods for assessing whetherdea@dactors are associated with risk

premiums.

12For other perspectives on conditioning complications, esge Boguth, Carlson, Fisher and Simutin (2011) and Penaranda and
Sentana (2016).



Table S.3: Con dence sets for risk price: industry portfolios and thaetof model

ioitd=(R1 itd)bin+(F itd®)br +u; i=21::::n
PANELA g =(dy; &2 )%= (gmkT; Gsms; Grme)°
VW MKT SMB HML
104 F amKT F gsmB F qHML

61-70 | 38* [612,-77] | 33 [10,158] | 53  [-27,54]
71-80 | 30  [-842,286] | 43  [44,302] | 33  [-244,133]
81-90 | 44*  [75259] | -16 [-78,0] 56*  [-25,24]
91-00 | 103  [-248,206] | 4*  [83, 596] 29  [-8,159)
00-10 | 14  [-60,260] | 57  [-276,105] | 40  [-66,85]

i itg=(R1 itg)bii+(F it )b +u;; i=1:n

PANELB q=(0o; 9 )=(gmkr:dsve; grumL); G partialled-out
VW MKT SMB HML
104 F AmKT F GsmB F AHmL

61-70 | 38 [-655,137] | 33  [-60,172] | 53  [-18, 166]
71-80 | 30  [-625,413] | 43  [-83,244] | 33  [-179, 219]
81-90 | 44  [-454,204] | -16  [-56,200] | 56  [-11, 186]
91-00 | 103  [-230,197] | 4*  [38,673] 29  [-19,156]
00-10 | 14  [-73,284] | 57  [-281,135] | 40  [-61,124]

Note — Sample includes monthly observations from January 1991 to ec@10 on the US. Series include 12 value weighted (VW)
industry portfolios as well as US factors for market (MKT), size (SMB)ok-to-market (HML). Con dence sets are at the 5% level.
F is the factor average over the considered time peiocaptures factor pricing. * denotes evidence of pricing at the 5% signcea
level interpreted as follows: given the reported con dence sets, &athr is priced if its average is not covered. In Panel A, the
inverted test id_(qg). This test follows ouRAPT approach wher® stands for “restricted” implying that tradable factor constraints
are imposed, here oR 1, in estimating and testing the model. In Panel B, the invertedlLtég} is applied on a system om 1
returns in deviation fronm,. This test follows ouPAPT approach wher® stands for “partialling-out” implying that all factors are
assumed non-tradable but the resulting unrestricted constant is sa&en the statistical objective function as it is based;onrp,
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Table S.4: Con dence sets for risk price: industry portfolios and fagtdr model

oitd=(R1 itg)bin+(F itd® )b +u; i=21:::n
g= g0 R =(gmkT; dsma; GumL; G mom)
VW MKT SMB HML MOM
104 F qmKT F dsmB F qHmL F d moMm
61-70 38 R 33 R 53 R 73 R
71-80 | 30  [-1933,657] | 43  [138,595] | 33  [422,171] | 113  [-175,594]
81-90 | 44  [-203,554] | -16  [258,81] | 56  [-199,53] | 66  [-1030, 81]
91-00 | 103  [-253,209] | 4*  [81,606] | 29  [37,174] | 112  [-212,443]
00-10 14 R 57 R 40 R -3 R
i itg=(R1 itg)bia+(F itdd)be + ui; i=1:n
PANELB q=(gy 92 )=(qmkr;dsvs; GHmL: G Mom); O partialled-out
VW MKT SMB HML MOM
04| F qMKT F qsmB F qHML F q Mom
61-70 38 R 33 R 53 R 73 R
71-80 | 30  [-945,3459] | 43  [-928,324] | 33 [-227,945] | 113 | [-1267,366]
81-90 | 44 [-3856,581] | -16 [-240,1333]| 56 [-178,956] | 66 | [-2194,70]
91-00 | 103 R 4 R 29 R 112 R
o0 (oot | 7 F Lzt | | (2o

Note — See notes to table S.3. The considered model is the four faceowithamarket (MKT), size (SMB), book-to-market (HML)

and momentum (MOM).
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Table S.5: Industry portfolios: testing traded factor assumption

i Ri=air+Radi+F be +u;

i=1:nm

a=0g O Rbe; d=by 1L

=9 D

q=(9; %)= (gukT; gsme; GrHmL)

VW CTE MKT SMB HML MOM
10 4 % F qvKT F dsms F qHmL F d mowm
61-70 | [2,16] | 38  [-765,157] | 33  [61,193] | 53  [-28,173] | - -
71-80 | [-7,16] | 30  [-843,510] | 43  [-104,302] | 33  [-251,250] | - -
8190 | [4,40] | 44  [707,274] | -16  [-83,298] | 56  [31,255] | - ;
91-00 | [49,35] | 103  [249,213] | 4*  [28,726] | 29  [24,163] ; ;
00-10 | [6,21] | 14 [-82,307] | 57  [315,146] | 40  [-68,129] | - -
rr Ri=ait+R1d+ F b + u; i=100m
a=g %% @br; d=bi L g=g %
a=(09p PR )=(gmkT; gsms; GHML; d MoM)
VW CTE MKT SMB HML MOM
10 4 9% F qmKT F qsms F qHML F q Mom
61-70 38 R 33 R 53 R 73 R
71-80 R 30 R] 43 R 33 R 113 R
81-90 | [-20,960] | 44  [-19988,683] | -16 [283,6831] | 56 [-212,4618] | 66  [-12992, 82]
91-00 R 103 R 4 R 29 R 112 R
00-10 R 14 R 57 R 40 R -3 R

Note — See notes to tables S.3 and S.4. The inverted teggisf). This test follows outJAPT whereU stands for “unrestricted”
implies that factors are assumed non-tradable in estimating and testing tiet. me test is applied on R so inference orf
allows to assess whethgg = gy: the hypothesis tha 1 (here, MKT) is traded is rejected at the 5% level when the con dencerset
f excludes zero.
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Table S.6: Con dence sets for risk price: size portfolios

ioitd=(R1 itgo)bin+(F itdR )b +u; i=1::;n
q=(09: % )=(gmkT; dsms; GrmL)

VW MKT SMB HML MOM
10 * F gmKT F gsmB F qHML F q mom
6170 | 3g 1 ¥ 79 33 1 ¥i260 | o 1 ¥780 ;

[ [1716¥] [ [-31¥] [ [2599¥]
71-80 30 R 43 R 33 R - -
81-90 | 44 R 16 R 56 1 ¥ 707 ; -

[ [818¥]
91-00 | 103* [11236,-1030]| 4  [568,1375] | 29  [-5394,730] | -
¥ -178

00-10 14* ] ' g 57 R 40 R - -

[ [1895¥[

i itg=(R1 itgo)bii+(F it )b +u; i=1:n

q=(0o: & )= (gmkT; dsmB; GHmL; G Mom)
VW MKT SMB HML MOM
04| F amKT F gsmB F gHML F g Mmom
61-70 38 R 33 R 53 R 73 R
71-80 30 R 43 R 33 R 113 R
81-90 44 R -16 R 56 R 66 R
91-00 | 103 R 4 R 29 1 ¥ 969 ., ] ¥ 3167
[ [3955¥%] [ [5035¥[

00-10 14* 1 ¥; -176] 57 R 40 R -3 R

[ [1261¥]

Note — Sample includes monthly observations from January 1991 to Mece2B10 on the US. Series include 25 size sorted value-
weighted (VW) portfolios as well as US factors for market (MKT), si3dIB), book-to-market (HML) and momentum (MOM). See

notes to tables S.3 and S.4 for further de nitions and applied infererthads.
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Table S.7: Con dence sets for risk price: industry portfolios and eetbr model

ioitg=(R1 itg)ba+(F it )be +u;  i=1::;n

PANELA q=(dy 92 )%= (gmkT; Gsme; GHML; GrMw; Gema)’®
EW MKT SMB HML RMW
10 4 F amkT F dswvB F gHML F qrMwW F dcma
63-70 28 R 57 R 41 R 2 R 22 R
71-80 30 R 54 R 33 R 5 R 25 R
g1-00 | 44 1 ¥ | 5 R 57 1 ¥C100 ) g 1 ¥ 67 oo R

[ [9¥] [ [49¥] [ [42¥]

91-00 | 103  [-2014,116]| 3  [389,255] | 27  [567,88] | 32  [298,368] | 30*  [-927,-3]
00-10 14 R 65 R 41 R 44 R 35 R
Ful | 45  [289,134] | 30  [-54,14] | 40  [-132,79] | 26  [15,326] | 34  [532,87]
VW MKT SMB HML RMW
104 F quKT F gswms F qHML F grRMW F gcma
63-70 28 R 57 R 41 R 2 R 22 R
71-80 30 R 54 R 33 R 5 R 25 R
81-90 | 44  [149,787] | -20  [-360,91] | 57  [-76,123] | 39  [-362,154] | 55  [-127,217]
91-00 | 103 [-242,1081]| 3*  [76,1641] | 27  [-98,167] | 32  [-596,48] | 30  [4, 893]
00-10 14 R 65 R 41 R 44 R 35 R
Ful | 45  [92,546] | 30  [13,358] | 40  [-25,110] | 26  [-446,31] | 34  [-31,768]

i itg=(R1 itg)bi+(F it )bir +u;; i=L:5n

PANELB g =(gy & )= ( gmkT; dsme: GHmL: Grvw; Gcma): G partialled-out
EW MKT SMB HML RMW CMA
104 F amKT F gsmB F GHML F GrRMW F dcma
63-70 28 R 57 R 41 R 2 R 22 R
71-80 30 R 54 R 33 R 5 R 25 R
81-90 44 R -20 R 57 R 39 R 55 R
91-00 | 103 | ¥ 134 L R 32 R 30 R
[ [1473¥] [ [-337¥]

00-10 14 R 65 R 41 R 44 R 35 R
Ful | 45  [219,136] | 30  [-71,138] | 40  [-103,243] | 26  [-179,264] | 34 [-373,369]

Note — Sample includes monthly observations from July 1963 to Decerdfiérch the US. Series include 12 equally weighted (EW)
and value-weighted (VW) industry portfolios as well as US factors faketgd MKT), size (SMB), book-to-market (HML), pro tability
(RMW), and investment (CMA). Con dence sets are at the 5% |elvés the factor average over the considered time petaziptures
factor pricing. * denotes evidence of pricing at the 5% signi cance levekpreted as follows: given the reported con dence sets, each
factor is priced if its average is not covered. The VW sets conformaitheRanel B are alR.
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Table S.8: Con dence sets for risk price: industry portfolios and eetbr model, excluding HML

ioitd=(R1 itd)bin+(F itd®)br +u; i=1:::n
PANELA g =(0o; & )%= (gwmkT; Gsme; Grmw; Gema)®
VW MKT SMB RMW CMA
10 | F qvKT F dsvs F grRMW F dcma

63-70 | 28  [126,400] | 57  [-113,60] | 2 [101,50] | 22  [50,62]
71-80 30 R 54 R 5 R 25 R
81-90 | 44  [141,645] | -20  [252,75] | 39  [220,126] | 55  [-107,122]
91-00 | 103  [-236,594] | 3*  [78,1099] | 32  [370,46] | 30  [27,477]
00-10 14 R 65 R 44 R 35 R

Ful | 45  [91,147] | 30  [13,152] | 26*  [97,20] | 34  [12,129]

ioitg=(R1 itg)bia+(F itdd )b +u;; i=1::;n
PANEL B g =(gp: o )=( gmkT; dsms: Grmw;: cma); g Partialled-out

VW MKT SMB RMW CMA

104 F AMKT F qsmB F GrMW F qcma
6370 | 28  [387,572] | 57  [131,285] | 2  [102,229] | 22  [-32,407]
71-80 30 R 54 R 5 R 25 R
81-90 | 44 [-3897,3713]| -20 [1601,1721]| 39  [-1327,1065]| 55 [-1664, 1968]
91-00 | 103 [221,6116] | 3*  [11,12025] | 32  [-7807,151] | 30  [13,4639]
00-10 14 R 65 R 44 R 35 R

Ful | 45  [-104,145] | 30  [18,153] | 26 [-93,46] | 34 [5, 127]

Note — Sample includes monthly observations from July 1963 to Decendi€r@h the US. Series include 12 value weighted (VW)
industry portfolios as well as US factors for market (MKT), size (SMBD tability (RMW), and investment (CMA). Results in Panel
A rely on ourRAPT approach, and those in Panel B or®&PT counterpart; see notes to notes to table S.3 for further de nitions.
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Table S.9: Industry portfolios, ve-factor model: testing the traded faassumption

fi

R1= ait+Radi+F big + uj;

i=1:00m

a=0 Gd & bir;

= bil 1 g =

& %

q=(090 92 )=(gmkT; GsmB; GHML ; GRMW; GCMA)

EW CTE MKT SMB RMW CMA
10 4 g F gMKT F gswvB F  grvw | F dcma
63-70 R 28 R 57 R 2 R 22 R
71-80 30 R 54 R 5 R 25 R
81-90 R 44 R -20 R 39 R 55 R
o100 | | ¥ 488 | qog 1 ¥ 169 ) R 32 R 30 R
[ [-168¥[ [ [1266¥[
00-10 R 14 R 65 R 44 R 35 R
VW CTE MKT SMB RMW CMA
10 4 9 qmKT gswvB grMW dcma
63-70 R R R R R
71-80 R R
81-90 R R R R R
91-00 R R R R R
00-10 R R R R R
ri Ri=ait+R1d+F b +u; i=1:0m
a=0g O ®be; d=bi1 L g=g 0
q=(do: & )= ( gmkT; dsmB; GrRMW; dcMA)
EW CTE MKT SMB RMW CMA
10 4 9 qmKT gswvB qrRMW dcma
63-70 R R R R R
71-80 R 1 ¥ 29 | R | ¥; -449 1 ¥; 23]
[ [359¥[ [ [-171¥] [ [335¥]
81-90 R R R R R
oLoo | 1 ¥ 568 ] ¥: 139 1 ¥: 520 . .
[ [-154¥] [ [1495¥[ [ [-277¥]
00-10 R R R R R
VW CTE MKT SMB RMW CMA
10 4 [ gMKT gswvs grRMW gcma
63-70 [-2, 62] [-461, 1094] [-152,507] | [-118,580] [-50, 863]
71-80 R R R R R
81-90 R R R R R
91-00 ] ¥; 47 ] ¥; -2123 ] ¥; -3919 ] ¥; 169 1 ¥; -1493
[ [465¥] [ [-239¥] [ [-10¥] [ [2722¥] [ [4¥]
00-10 R R R R R

Note — The inverted test is(q; f). This test follows outUAPT whereU stands for “unrestricted” implies that factors are assumed
non-tradable in estimating and testing the model. The test is appligd dR 1 so inference orfi allows to assess whethgr= g,: the
hypothesis thaR 1 (here, MKT) is traded is rejected at the 5% level when the con dencersétexcludes zero. In the upper Panel of
this table, all con dence sets on the HML price are the real line; the loweeRacludes HML.
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Table S.10: Con dence sets for risk price: industry and size portfol@sfactor model, instrumenting MKT
with LagTBill31

ioitd=(R1 itgbin+(F itgd)br +u; i=1:n
PANELA g =(dy; &2 )%= (gmkT; dsme; GHmL ; Grmw; ema)®
EW MKT SMB HML RMW CMA
10 4 qmKT gdswvs qumL grMW dcma
Full [-1496, 232] | [-265, 29]* [-577, 377] [-354, 934] [-2391, 197]
VW MKT SMB HML RMW CMA
104/ F qgwr |F qgswe |F  qum | F GrRMW F  qgcwa
Full 45 ? 30 ? 40 ? 26 ? 34 ?
i itg=(R1 itg)bi+(F it )bir +u;; i=1:n
PANELB q=(do 92 )=(qmkT;dsme; GumL; GrRMw; dcma); G partialled-out
EW MKT SMB HML RMW CMA
10 4 qmKT dswvB qumL grMw dcma
Full ] ¥, 269 1 ¥; 30 ] ¥; 337 1 ¥; -10723 1 ¥, 174
[ [ 7594¥] [ [3219¥] [ [7422¥] [ [-314¥] [ [23510¥[
VW MKT SMB HML RMW CMA
04| F gmKT F gswvs F gHmL F grMW F dcma
Full 45 ? 30 ? 40 ? 26 ? 34 ?

Note — Sample includes monthly observations from July 1963 to Decenffiérch the US. Series include 37 equally weighted (EW)
and value-weighted (VW) industry and size portfolios as well as US fadtrmarket (MKT), size (SMB), book-to-market (HML),
pro tability (RMW), and investment (CMA).

Table S.11: Industry and size portfolios, ve-factor model. Instrumenti§T with: LagTBill31, Testing
Traded Factor Assumption

ri Ri=git+ Rdi+ Fbg + uj; i=1:onm
a=g Gd ®br; d=bi L g=9g g
q=(090 PR )=(gukT; Gsms; GHML; GRMW; dcma)
EW CTE MKT SMB HML RMW CMA
10 4 9 gmKT dswvs qumL grMW dcma
Full 1 ¥, 79 1 ¥; 417 1 ¥; 37 ] ¥; 37§ 1 ¥; -3207 1 ¥; 229
[ [762¥[ [ [1775¥%] [ [923¥] [ [2172¥] [ [-355¥] [ [7036¥[
VW CTE MKT SMB HML RMW CMA
10 4 9 F gmKT F gsws | F gHmL F grMW F dcma
Full ? 45 ? 30 ? 40 ? 26 ? 34 ?

Note — The inverted test is(q; f). This test follows outJAPT whereU stands for “unrestricted” implies that factors are assumed
non-tradable in estimating and testing the model. The test is applind dR1 so inference orfi allows to assess whethgr= gy: the
hypothesis thaR ;1 (here, MKT) is traded is rejected at the 5% level when the con dencersétexcludes zero.
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